Search results for studio-integration
Since release 1.65.0, the release changelog is available at the github releases page.
TCOMP-2066: JobExecutor - afterGroup not called testing
TCOMP-2320: Export Dynamic dependencies in job build studio-exports
TCOMP-2427: No enum constant org.talend.sdk.component.api.record.Schema.Type.FIXED beam schema-record
TCOMP-2475: Migration from higher version not protected for a connector component-manager
TCOMP-2567: ZonedDateTime is not rendered in talend-component:web maven-plugin studio-integration
TCOMP-2622: Images in documentation, for latest dev version, are leading to Page Not Found documentation
TCOMP-2626: Handle the "null" string value in MappingUtils schema-record
TCOMP-2631: CarMain decodes badly encoded windows path maven-plugin
TCOMP-2632: Fix _placeholder validator and auto fix them and _displayName maven-plugin
TCOMP-2633: Load package-info class from nested sources component-manager
TCOMP-2694: svg validation mojo fails on windows build maven-plugin
TCOMP-2700: Array of Array of Elements doesn’t have an element schema schema-record Studio studio-integration
TCOMP-2710: Unable to guess schema - improve workflow and exception throwing/handling schema-record Studio studio-integration
TCOMP-2712: Error when creating component-server cache on RepositoryModel endpoint component-server Studio
TCOMP-2766: Regression on SVG validation on connectors with only PNG images maven-plugin
TCOMP-2800: component-manager InternationalizationService can’t find bundle in container component-manager
TCOMP-2845: Starter-toolkit - Generated project can’t build intellij starter
TCOMP-2846: @AfterGroup issues without outputFactory testing
TCOMP-2847: Fix NPE when Update annotation has no activeif defined cloud component-manager Studio
TCOMP-1986: New @Hidden annotation for @Properties ui
TCOMP-1989: On PDesigner forms, Have button position not set to bottom when linked property is not displayed component-form ui
TCOMP-2100: Provide icons bundle endpoint component-server
TCOMP-2408: ComponentException should transform cause exception to low level exception component-server
TCOMP-2410: Support of 'document' type schema-record studio-integration
TCOMP-2598: Handle themes in component-server icon endpoints component-server
TCOMP-2635: Schema/Record subtype handling cloud schema-record
TCOMP-2679: Handle svg icons in Studio component-server studio-integration
TCOMP-2744: Add @ReadOnly annotation to component-api api
TCOMP-2798: Allow ConfigurableClassLoader to use caching for specific classes component-manager
TCOMP-2600: Upgrade netty to 4.1.104.Final testing
TCOMP-2620: Make project buildable for standard users build
TCOMP-2636: Upgrade commons-compress to 1.26.0 build
TCOMP-2682: Update svg validator mojo build maven-plugin
TCOMP-2687: Upgrade tomcat to 9.0.87
TCOMP-2688: Upgrade cxf to 3.5.8
TCOMP-2692: Upgrade jackson to 2.16.0 component-server
TCOMP-2693: Handle multiple viewpoints in svg validation mojo build maven-plugin
TCOMP-2697: Enable http client validation build maven-plugin
TCOMP-2739: Create an action validator for the @DynamicDependencies annotation maven-plugin
TCOMP-2743: Add missing httpclient validator unit test testing
TCOMP-2747: Upgrade netty to 4.1.111.Final testing
TCOMP-2750: Switch user auth to token auth on ossrh build
TCOMP-2770: Upgrade cxf to 3.5.9 component-server
TCOMP-2800: component-manager InternationalizationService can’t find bundle in container component-manager
TCOMP-2845: Starter-toolkit - Generated project can’t build intellij starter
TCOMP-2846: @AfterGroup issues without outputFactory testing
TCOMP-2847: Fix NPE when Update annotation has no activeif defined cloud component-manager Studio
TCOMP-1986: New @Hidden annotation for @Properties ui
TCOMP-2066: JobExecutor - afterGroup not called testing
TCOMP-2710: Unable to guess schema - improve workflow and exception throwing/handling schema-record Studio studio-integration
TCOMP-2766: Regression on SVG validation on connectors with only PNG images maven-plugin
TCOMP-1989: On PDesigner forms, Have button position not set to bottom when linked property is not displayed component-form ui
TCOMP-2408: ComponentException should transform cause exception to low level exception component-server
TCOMP-2744: Add @ReadOnly annotation to component-api api
TCOMP-2798: Allow ConfigurableClassLoader to use caching for specific classes component-manager
TCOMP-2620: Make project buildable for standard users build
TCOMP-2743: Add missing httpclient validator unit test testing
TCOMP-2770: Upgrade cxf to 3.5.9 component-server
TCOMP-2475: Migration from higher version not protected for a connector component-manager
TCOMP-2567: ZonedDateTime is not rendered in talend-component:web maven-plugin studio-integration
TCOMP-2694: svg validation mojo fails on windows build maven-plugin
TCOMP-2700: Array of Array of Elements doesn’t have an element schema schema-record Studio studio-integration
TCOMP-2712: Error when creating component-server cache on RepositoryModel endpoint component-server Studio
TCOMP-2100: Provide icons bundle endpoint component-server
TCOMP-2410: Support of 'document' type schema-record studio-integration
TCOMP-2697: Enable http client validation build maven-plugin
TCOMP-2739: Create an action validator for the @DynamicDependencies annotation maven-plugin
TCOMP-2747: Upgrade netty to 4.1.111.Final testing
TCOMP-2750: Switch user auth to token auth on ossrh build
TCOMP-2798: Allow ConfigurableClassLoader to use caching for specific classes component-manager
TCOMP-2770: Upgrade cxf to 3.5.9 component-server
TCOMP-2475: Migration from higher version not protected for a connector component-manager
TCOMP-2694: svg validation mojo fails on windows build maven-plugin
TCOMP-2710: Unable to guess schema - improve workflow and exception throwing/handling schema-record Studio studio-integration
TCOMP-2766: Regression on SVG validation on connectors with only PNG images maven-plugin
TCOMP-2700: Array of Array of Elements doesn’t have an element schema schema-record Studio studio-integration
TCOMP-2712: Error when creating component-server cache on RepositoryModel endpoint component-server Studio
TCOMP-2741: Revert remove static modifier in BeamProducerFinder
TCOMP-2751: Revert feat(TCOMP-2475) build
TCOMP-2320: Export Dynamic dependencies in job build studio-exports
TCOMP-2692: Upgrade jackson to 2.16.0 component-server
TCOMP-2693: Handle multiple viewpoints in svg validation mojo build maven-plugin
TCOMP-2631: CarMain decodes badly encoded windows path maven-plugin
TCOMP-2632: Fix _placeholder validator and auto fix them and _displayName maven-plugin
TCOMP-2633: Load package-info class from nested sources component-manager
TCOMP-2598: Handle themes in component-server icon endpoints component-server
TCOMP-2635: Schema/Record subtype handling cloud schema-record
TCOMP-2679: Handle svg icons in Studio component-server studio-integration
TCOMP-2682: Update svg validator mojo build maven-plugin
TCOMP-2687: Upgrade tomcat to 9.0.87
TCOMP-2384: Wrong studio mapping on sub records studio-integration
TCOMP-2342: httpclient - Guesschema displays dialogbox to execute the connector if it can’t be inferred. studio studio-integration
TCOMP-2283: Handle Dynamic, Document and Byte column types in guess schema studio studio-integration
TCOMP-2522: Upgrade johnzon to 1.2.21 component-manager
TCOMP-2590: Upgrade tomcat to 9.0.84 component-server
TCOMP-2339: Remove static modifier in BeamProducerFinder beam
TCOMP-2557: [TCK]: unable to test connection well if the password contains ^ component-server studio studio-integration
TCOMP-2564: component-starter image issues tsbi
TCOMP-2565: Dynamic schema with generic JDBCconnection fails with wrong dbtype
TCOMP-2582: Can’t create components on starter-toolkit.talend.io intellij starter
TCOMP-2144: Create a validation rule for good usage of Schema and Record
TCOMP-2533: consider to remove the verbose debug log for DIRowStructVisitor and DIRecordVisitor and MappingUtils studio-integration
TCOMP-2550: Upgrade avro to 1.11.3 beam schema-record
TCOMP-2552: support custom connection/close component icon for tck connector in studio component-server
TCOMP-2558: Upgrade guava to 32.1.3-jre build
TCOMP-2559: Upgrade lombok to 1.18.30 build
TCOMP-2560: Upgrade junit to 5.10.0 testing
TCOMP-2562: remove grpc from beam-runners-spark-3 beam
TCOMP-2571: Bind metrics in prometheus format to Kubernetes Monitoring system component-server
TCOMP-2578: Remove geronimo-opentracing from component-server component-server vault-client
TCOMP-2564: component-starter image issues tsbi
TCOMP-2533: consider to remove the verbose debug log for DIRowStructVisitor and DIRecordVisitor and MappingUtils studio-integration
TCOMP-2552: support custom connection/close component icon for tck connector in studio component-server
TCOMP-2464: API action/execute error message not correct component-server
TCOMP-2540: Synchronize entryMap feeding beam schema-record testing
TCOMP-2541: Improve performance on dynamic column studio-integration
TCOMP-2535: Allow optional outgoing row on Input connectors studio studio-integration
TCOMP-2374: DIRecordVisitor to fill Studio Dynamic object’s column name by tck Schema.Entry.getName which must follow tck name rule schema-record studio-integration
TCOMP-2506: upgrade avro to 1.11.x for component-runtime beam schema-record
TCOMP-2538: Upgrade commons-compress to 1.24.0
TCOMP-2539: Upgrade jgit to 6.7.0.202309050840-r
TCOMP-2543: Upgrade TSBI to 4.0.1-20230911145727 build tsbi
TCOMP-2544: Upgrade snappy to 1.1.10.5
TCOMP-2545: Upgrade tomcat to 9.0.81 component-server
TCOMP-2547: Upgrade netty to 4.1.100.Final testing
TCOMP-2548: Upgrade tomcat to 9.0.82 component-server
TCOMP-2540: Synchronize entryMap feeding beam schema-record testing
TCOMP-2506: upgrade avro to 1.11.x for component-runtime beam schema-record
TCOMP-2203: API documentation correction and improvements documentation
TCOMP-2520: Date column read as Dynamic from File goes as Record:Schema.Type.STRING and no field.pattern passed to connector runtime class schema-record studio-integration
TCOMP-2375: Improve performance on Schema/Record schema-record
TCOMP-2525: Upgrade netty to 4.1.97.Final
TCOMP-2526: Upgrade guava to 32.1.2-jre
TCOMP-2527: Upgrade tomcat to 9.0.80 component-server
TCOMP-2529: Upgrade batik to 1.17
TCOMP-2530: Upgrade ivy to 2.5.2
TCOMP-2507: Upgrade commons-compress to 1.23.0
TCOMP-2508: Upgrade commons-io to 2.13.0
TCOMP-2509: Upgrade cxf to 3.5.6
TCOMP-2510: Upgrade gmavenplus to 1.13.1
TCOMP-2511: Upgrade groovy to 3.0.18
TCOMP-2512: Upgrade jackson-databind/jackson to 2.15.2
TCOMP-2513: Upgrade jacoco to 0.8.10
TCOMP-2514: Upgrade java11.jaxb to 2.3.8
TCOMP-2515: Upgrade junit5 to 5.9.3
TCOMP-2516: Upgrade mvn to 3.8.8
TCOMP-2517: Upgrade surefire-plugin to 3.0.0
TCOMP-2518: Upgrade tomcat to 9.0.78
TCOMP-1897: Bulk API returns byte[] instead of a json component-server
TCOMP-2468: Can’t resolve component name when plugins have equal family name component-manager
TCOMP-2479: Error message for Min & Max annotation isn’t correct component-manager
TCOMP-2307: Upgrade beam to 2.46.0, Spark to 3.2.2 and Flink to 1.14 beam
TCOMP-2473: Upgrade netty to 4.1.94.Final testing
TCOMP-2474: Upgrade snappy to 1.1.10.1 beam
TCOMP-2437: Missing classpath elements on component-server for CE component-server
TCOMP-2447: Revert datetime instant management changes on AvroSchema beam
TCOMP-2406: Error logs when kill kafka streaming job component-manager
TCOMP-2443: Allow component-manager extensions for Studio studio studio-integration
TCOMP-2428: Stop deciphering vault secrets during migration process component-server vault-client
TCOMP-2440: Upgrade tomcat to 9.0.75 component-server
TCOMP-2441: Upgrade johnzon to 1.2.20 component-manager
TCOMP-2442: Upgrade jib-core to 0.24.0 component-server remote-engine-customizer starter
TCOMP-2451: Rework dependencies on config studio
TCOMP-2447: Revert datetime instant management changes on AvroSchema beam
TCOMP-2437: Missing classpath elements on component-server for CE component-server
TCOMP-2426: Missing Instant conversion to Long component-manager schema-record
TCOMP-2435: Port not assigned correctly on CE component-server
TCOMP-2407: Allow to deploy specific branch qualified artifacts build testing
TCOMP-2391: Phase out layerspector and migrate to JIB for TCK Api Test script build component-server remote-engine-customizer starter tsbi
TCOMP-2423: Upgrade netty to 4.1.92.Final testing
TCOMP-2424: Upgrade jackson to 2.15.0 beam
TCOMP-2437: Missing classpath elements on component-server for CE component-server
TCOMP-2435: Port not assigned correctly on CE component-server
TCOMP-2426: Missing Instant conversion to Long component-manager schema-record
TCOMP-2293: Add Instant parameter type to withTimestamp method to avoid ms precision loss schema-record
TCOMP-2355: Error on language support for xx_YY language files component-server
TCOMP-2383: Guess schema - Can’t find component name Client component-manager
TCOMP-2389: There is no response when use guess schema for tNetSuiteV2019Input schema-record studio studio-integration
TCOMP-2414: Need add-opens for Pulsar Connector running with Java 17 component-server
TCOMP-2343: Guesschema - Improve error message schema-record studio-integration
TCOMP-2405: Upgrade snakeyaml to 2.0 build
TCOMP-2395: Upgrade meecrowave to 1.2.15 component-server
TCOMP-2369: Make DateTime option configurable api
TCOMP-2365: Add missing add-opens needed by some connectors to component-server component-server
TCOMP-2370: [RunConv] Prep output: the "operation key" field in additional parameters had an empty list instead of the list of table columns. component-server
TCOMP-2348: Upgrade tomcat to 9.0.69 component-server
TCOMP-2349: Upgrade netty to 4.1.87.Final testing
TCOMP-2366: Replace JAVA_OPTS by JDK_JAVA_OPTIONS component-server
TCOMP-2371: [TCK JDBC]: Studio dynamic column metadata info : isKey should follow runtime dynamic object, not the input component’s studio schema studio-integration
TCOMP-2365: Add missing add-opens needed by some connectors to component-server component-server
TCOMP-2370: [RunConv] Prep output: the "operation key" field in additional parameters had an empty list instead of the list of table columns. component-server
TCOMP-2366: Replace JAVA_OPTS by JDK_JAVA_OPTIONS component-server
TCOMP-2165: Support connectors in TOS schema-record studio studio-integration
TCOMP-2330: Improve JVM version check component-manager
TCOMP-2327: Upgrade cxf to 3.5.5 due to CVE-2022-46364
TCOMP-2328: Upgrade woodstox to 6.4.0 due to CVE-2022-40152
TCOMP-2334: Upgrade netty to 4.1.86.Final testing
TCOMP-2335: Upgrade commons-net to 3.9.0 documentation
TCOMP-2336: Allow component-server to not fail on empty/not found component-registry descriptor component-server
TCOMP-2340: Reduce warning on jmx registration component-manager
TCOMP-2365: Add missing add-opens needed by some connectors to component-server component-server
TCOMP-2370: [RunConv] Prep output: the "operation key" field in additional parameters had an empty list instead of the list of table columns. component-server
TCOMP-2366: Replace JAVA_OPTS by JDK_JAVA_OPTIONS component-server
TCOMP-2330: Improve JVM version check component-manager
TCOMP-2327: Upgrade cxf to 3.5.5 due to CVE-2022-46364
TCOMP-2328: Upgrade woodstox to 6.4.0 due to CVE-2022-40152
TCOMP-2311: DiscoverSchemaExtended validation is too strict maven-plugin
TCOMP-2313: Entries order is not preserved when updating entry name schema-record
TCOMP-2321: Record.Builder.with() does not allow null value for datetime schema-record
TCOMP-2237: Create a streaming configuration section for documentation documentation
TCOMP-2308: component-runtime-http-junit capture headers case sensitivity testing
TCOMP-2365: Add missing add-opens needed by some connectors to component-server component-server
TCOMP-2370: [RunConv] Prep output: the "operation key" field in additional parameters had an empty list instead of the list of table columns. component-server
TCOMP-2366: Replace JAVA_OPTS by JDK_JAVA_OPTIONS component-server
TCOMP-2330: Improve JVM version check component-manager
TCOMP-2311: DiscoverSchemaExtended validation is too strict maven-plugin
TCOMP-2313: Entries order is not preserved when updating entry name schema-record
TCOMP-2241: [Runtime convergence] : Join connector fails - No translator known api beam
TCOMP-2303: Pattern validation error in JsonSchemaValidatorExt component-form
TCOMP-2304: talend-component:web goal may fail with java >= 17 maven-plugin
TCOMP-2277: Complete the TCK schema’s entry properties schema-record
TCOMP-2285: Support of qualifier in version of connectors to be loaded by the component manager component-manager
TCOMP-2291: Provide to streaming connectors the stop strategy applied component-manager
TCOMP-2297: Support flow return var for tck connector in studio studio studio-integration
TCOMP-2236: Streaming stop strategy in livy jobs beam component-manager
TCOMP-2265: Upgrade beam to 2.37.0 beam
TCOMP-2272: Use java 17 TSBI image for component-server component-server starter tsbi
TCOMP-2294: Upgrade batik to 1.16 maven-plugin
TCOMP-2295: Upgrade tomcat to 9.0.68 component-server
TCOMP-2296: Upgrade jsoup to 1.15.3 documentation
TCOMP-2298: Upgrade netty to 4.1.85.Final testing
TCOMP-2311: DiscoverSchemaExtended validation is too strict maven-plugin
TCOMP-2313: Entries order is not preserved when updating entry name schema-record
TCOMP-2303: Pattern validation error in JsonSchemaValidatorExt component-form
TCOMP-2241: [Runtime convergence] : Join connector fails - No translator known api beam
TCOMP-2236: Streaming stop strategy in livy jobs beam component-manager
TCOMP-2289: Payload validator fails on regexp matching component-manager
TCOMP-2186: Guess schema service for processors api schema-record
TCOMP-2276: Make Streaming stop strategy configurable component-manager studio
TCOMP-1998: Remove component-server-vault-proxy from cloud environments component-server component-server-vault-proxy helm-charts vault-client
TCOMP-2256: Replace nashorn javascript engine by rhino component-manager studio
TCOMP-2259: Support db column name/length/precision with guess schema for all types studio
TCOMP-2268: Upgrade jib to 0.22.0 remote-engine-customizer starter tsbi
TCOMP-2273: Upgrade TSBI to 3.0.8-20220928070500 component-server starter tsbi
TCOMP-2274: Move component-starter-server to TSBI starter
TCOMP-2275: Use java 17 TSBI image for CI build build tsbi
TCOMP-2286: Upgrade jackson to 2.13.4
TCOMP-2287: Upgrade commons-text to 1.10.0 documentation
TCOMP-2276: Make Streaming stop strategy configurable component-manager studio
TCOMP-2239: Fix Record.Builder interface to avoid API break schema-record
TCOMP-2226: Implement a default UI for streaming sources for user configuration of a StopStrategy component-form component-manager
TCOMP-2234: Override blocking read process in streaming connectors component-manager studio
TCOMP-2258: @Documentation to tooltips in uiSchema component-form component-server
TCOMP-2147: Decrease log level for blacklisted dependencies component-manager
TCOMP-2228: Upgrade git-commit-id-plugin to 4.9.10
TCOMP-2232: Upgrade slf4j to 1.7.34
TCOMP-2238: Upgrade jib-core to 0.16.0
TCOMP-2249: Upgrade johnzon to 1.2.19
TCOMP-2251: Upgrade jackson to 2.13.3
TCOMP-2252: MavenRepositoryResolver call fallback only it’s needed component-manager
TCOMP-2257: Upgrade meecrowave to 1.2.14 component-manager
TCOMP-2263: Upgrade openwebbeans-se to 2.0.27 component-manager
TCOMP-2264: Upgrade TSBI to 3.0.5-20220907120958 tsbi
TCOMP-2239: Fix Record.Builder interface to avoid API break schema-record
TCOMP-2182: Guess Schema in Studio always uses version of component 1 studio studio-integration
TCOMP-2190: Handle partial messages for large payloads in websocket communications component-server studio
TCOMP-2107: Implement a stop strategy for streaming input connectors component-manager studio
TCOMP-2177: Suppress illegal reflective access operation has occurred warnings component-manager
TCOMP-2163: [QA] Component Runtime API test Framework testing
TCOMP-2187: Introduce IntegerConstraintEnricher component-form
TCOMP-2204: Upgrade netty to 4.1.79.Final
TCOMP-2205: Upgrade crawler-commons to 1.3
TCOMP-2206: Upgrade guava to 31.1-jre
TCOMP-2207: Upgrade maven to 3.8.6
TCOMP-2208: Upgrade maven-shade-plugin to 3.3.0 build
TCOMP-2209: Upgrade junit5 to 5.9.0
TCOMP-2210: Upgrade tomcat to 9.0.63
TCOMP-2211: Upgrade cxf to 3.5.2
TCOMP-2212: Upgrade bndlib to 5.2.0
TCOMP-2217: Update rat-plugin to 0.14 build
TCOMP-2219: Add API to convert data in Record schema-record
TCOMP-2223: Upgrade log4j to 2.18.0
TCOMP-2227: Upgrade commons-io to 2.9.0
TCOMP-2229: Upgrade jcommander to 1.81
TCOMP-2230: Allow specific context UI
TCOMP-2233: support decimal type
TCOMP-2190: Handle partial messages for large payloads in websocket communications component-server studio
TCOMP-2177: Suppress illegal reflective access operation has occurred warnings component-manager
TCOMP-2177: Suppress illegal reflective access operation has occurred warnings component-manager
TCOMP-2176: Record : Infinite loop schema-record
TCOMP-2146: Car bundler improvements car-bundler maven-plugin
TCOMP-2151: Add documentation translation to metadata component-server
TCOMP-2132: Optimisation for preparation schema-record
TCOMP-2143: [JDBC TCK]: Support MODULE_LIST field for studio in tck connector ui for driver jars choose studio
TCOMP-2152: Upgrade jackson to 2.13.2 beam bom maven-plugin
TCOMP-2153: Bump netty to 4.1.77.Final due to CVE CVE-2022-24823 testing
TCOMP-2154: Upgrade maven-settings to 3.8.5 due to CVE-2021-26291 build
TCOMP-2155: Upgrade jdom2 to 2.0.6.1 due to CVE-2021-33813 beam
TCOMP-2164: Ensure that decryption is done only on credential fields component-server vault-client
TCOMP-2171: Add component type to ComponentIndex component-server
TCOMP-2152: Upgrade jackson to 2.13.2 beam bom maven-plugin
TCOMP-2146: Car bundler improvements car-bundler maven-plugin
TCOMP-2111: [Runtime convergence] : Join connector fails in cloud environment with hybrid tck/beam connectors api beam
TCOMP-2123: Bug on order columns for Avro Impl beam schema-record
TCOMP-2127: Fix avro records where array contains nullable array beam schema-record
TCOMP-2131: starter-toolkit fails when generating a connector from openapi description starter
TCOMP-2133: component-registry uses detailed version not baseVersion in snapshot case build maven-plugin
TCOMP-2134: Activate intellij plugin by default intellij starter
TCOMP-2138: starter-toolkit github repository creation process fails starter
TCOMP-2135: Component web tester in non interactive mode component-server maven-plugin testing
TCOMP-2126: give default implementation to Record.Builder to not break api api
TCOMP-2130: Add git informations in starter-toolkit’s environment starter
TCOMP-2127: Fix avro records where array contains nullable array beam schema-record
TCOMP-2130: Add git informations in starter-toolkit’s environment starter
TCOMP-2126: give default implementation to Record.Builder to not break api api
TCOMP-2085: Add extras manipulations on Record BuilderImpl beam schema-record
TCOMP-2102: Wrong maven resolution with car when using snapshot in prepare-repository goal build maven-plugin
TCOMP-2119: Avro Record : array containing Null. beam schema-record
TCOMP-2112: [JDBC] discover schema API is failing on production. build maven-plugin
TCOMP-2103: Link affected jira components to issue in changelog as keywords for search documentation
TCOMP-2098: Improve m2 discovery process documentation
TCOMP-2104: Header link should be linked to latest path documentation
TCOMP-2105: Upgrade Tomcat to 9.0.60 component-server maven-plugin starter
TCOMP-2108: Upgrade maven plugins
TCOMP-2109: Upgrade git-commit-id-plugin to 4.0.5
TCOMP-2110: Replace log4j by reload4j stitch
TCOMP-2114: Upgrade TSBI to 2.9.27-20220331162145 component-server component-server-vault-proxy starter tsbi
TCOMP-2115: Upgrade jackson to 2.12.6 due to CVE-2020-36518 bom
TCOMP-2116: Upgrade log4j2 to 2.17.2
TCOMP-2117: Upgrade slf4j to 1.7.33
TCOMP-2118: Upgrade tomcat to 9.0.62 (mitigation for CVE-2022-22965) component-server component-server-vault-proxy starter
TDI-47693 : fix misaligned openwebbeans-spi dependency studio
TCOMP-2003: Maven dependency classifier considered as version in dependencies.txt by Studio
TCOMP-2096: Support BigDecimal type in DI integration
TCOMP-2087: Upgrade Tomcat to 9.0.59 due to CVE-2022-23181
TCOMP-2088: Upgrade OpenWebBeans to 2.0.26
TCOMP-2089: Upgrade meecrowave to 1.2.13
TCOMP-2090: Upgrade johnzon to 1.2.16
TCOMP-2091: Upgrade Beam to 2.36.0
TCOMP-2092: MvnCoordinateToFileConverter fakes classifiers' support
TCOMP-2093: Improve component-runtime documentation site
TCOMP-2097: Upgrade cxf to 3.5.1
TCOMP-1803: RecordBuilder.withRecord(final String name, final Record value) doesn’t accept null value
TCOMP-2079: Intellij plugin fails on plugin startup
TCOMP-2080: AvroRecord refuses Union[null, RecordSchema]
TCOMP-2082: ComponentManager’s findDefaultM2 method takes comment as granted
TCOMP-2058: Add dependencies on config
TCOMP-2074: Change JSON log format to conform to ECS
TCOMP-2083: Give component-runtime version on ComponentManager startup
TCOMP-2084: Allow use of i18n in connectors' metadata for custom labels
TCOMP-2079: Intellij plugin fails on plugin startup
TCOMP-2080: AvroRecord refuses Union[null, RecordSchema]
TCOMP-2082: ComponentManager’s findDefaultM2 method takes comment as granted
TCOMP-2063: Avro Record Constructor
TCOMP-2064: NPE with lookup missconfiguration in Join processor
TCOMP-2067: Bug on order columns
TCOMP-2071: Define default methods on Schema / Entry / Record interfaces
TCOMP-2045: Pass and read meta information about columns.
TCOMP-2072: Ligthen parameters for component-server docker image
TCOMP-2057: AvroSchema : optimize getType by using type fields
TCOMP-2060: Upgrade log4j2 to 2.17.0 due to CVE-2021-45105
TCOMP-2061: Upgrade netty to 4.1.72.Final due to CVE-2021-43797
TCOMP-2065: Internationalized Services as Serializable
TCOMP-2068: Upgrade log4j2 to 2.17.1 due to CVE-2021-44832
TCOMP-2069: Create a latest tag for component-runtime images
TCOMP-2070: Upgrade TSBI to 2.9.18-20220104141654
TCOMP-2073: Upgrade maven-core to 3.8.4 due to CVE
TCOMP-2047: RecordBuilder in RowstructVisitor keeps values
TCOMP-2048: RowstructVisitor should respect case in member not java convention
TCOMP-2049: Incompatible class change on Entry
TCOMP-2053: Migration failing when using custom java code in configuration
TCOMP-2018: Optimize Avro Record
TCOMP-2054: Upgrade log4j2 to 2.16.0 due to CVE-2021-44228
TCOMP-2053: Migration failing when using custom java code in configuration
TCOMP-2054: Upgrade log4j2 to 2.16.0 due to CVE-2021-44228
TCOMP-2049: Incompatible class change on Entry
TCOMP-2047: RecordBuilder in RowstructVisitor keeps values
TCOMP-2048: RowstructVisitor should respect case in member not java convention
TCOMP-2019: Sanitized columns name collision support
TCOMP-2021: Missing logic when handling null date values in Record
TCOMP-2046: Rowstruct visitor recreates schema at each incoming row
TCOMP-2004: [Runtime convergence] New tck/API to retrieve dataset full content
TCOMP-2008: Add ability to insert a schema entry on Record BuilderImpl
TCOMP-1924: Support Java 17 runtime
TCOMP-2023: Upgrade gradle to 6.9.1
TCOMP-2024: Upgrade maven-bundle-plugin to 4.2.1
TCOMP-2025: Upgrade documentation to latest
TCOMP-2027: Upgrage junit to 5.8.1
TCOMP-2028: Provide nashorn scripting engine when using java15+
TCOMP-2029: Upgrade jaxb to 2.3.5
TCOMP-2030: Upgrade Tomcat to 9.0.54 due to CVE-2021-42340
TCOMP-2031: Upgrade Beam to 2.33.0
TCOMP-2032: Upgrade Spark to 3.2.0
TCOMP-2035: Check build w/ Java 17 on CI
TCOMP-2036: Upgrade cxf to 3.4.5
TCOMP-2037: Upgrade johnzon to 1.2.15
TCOMP-2038: Upgrade bouncycastle to 1.69
TCOMP-2042: Return a key related to version of connector services and its content
TCOMP-2043: Upgrade spotless to 2.17.3 and talend-java-formatter to 0.2.2
TCOMP-2044: Upgrade TSBI to 2.9.2-20211106085418
TCOMP-2770: Upgrade cxf to 3.5.9 component-server
TCOMP-2765: Upgrade tomcat to from 9.0.87 to 9.0.93 component-server
TCOMP-2687: Upgrade tomcat to 9.0.87
TCOMP-2590: Upgrade tomcat to 9.0.84 component-server
TCOMP-2548: Upgrade tomcat to 9.0.82 component-server
TCOMP-2263: Upgrade openwebbeans-se to 2.0.27 component-manager
TCOMP-2395: Upgrade meecrowave to 1.2.15 component-server
TCOMP-2527: Upgrade tomcat to 9.0.80 component-server
TCOMP-2412: Upgrade tomcat to 9.0.69 component-server
TCOMP-2327: Upgrade cxf to 3.5.5 due to CVE-2022-46364
TCOMP-2328: Upgrade woodstox to 6.4.0 due to CVE-2022-40152
TCOMP-2294: Upgrade batik to 1.16 maven-plugin
TCOMP-2295: Upgrade tomcat to 9.0.68 component-server
TCOMP-2045: Pass and read meta information about columns. studio-integration
TCOMP-2096: Support BigDecimal type in DI integration schema-record studio studio-integration
TCOMP-2070: Upgrade TSBI to 2.9.18-20220104141654 build component-server component-server-vault-proxy tsbi
TCOMP-2105: Upgrade Tomcat to 9.0.60 component-server maven-plugin starter
TCOMP-2030: Upgrade Tomcat to 9.0.54 due to CVE-2021-42340
TCOMP-2053: Migration failing when using custom java code in configuration
TCOMP-2054: Upgrade log4j2 to 2.16.0 due to CVE-2021-44228
TCOMP-2048: RowstructVisitor should respect case in member not java convention
TCOMP-2047: RecordBuilder in RowstructVisitor keeps values
TCOMP-2046: Rowstruct visitor recreates schema at each incoming row
TCOMP-1963: Missing IMetaDataColumn fields in guess schema
TCOMP-1987: Avro record : Array of Array of records issue
TCOMP-1988: Unable to run component-runtime connectors in Studio with JDK 17
TCOMP-2005: Non defined columns appear in schema
TCOMP-2006: Support empty values for Numbers case
TCOMP-2010: Error on Documentation build on "less" usage
TCOMP-2020: talend-component-kit-intellij-plugin module build fails using Bintray (decomissioned)
TCOMP-1900: Create jenkins release process for component-runtime
TCOMP-1997: Enable plugins reloading according criteria
TCOMP-2000: Upgrade netty to 4.1.68.Final
TCOMP-2001: Upgrade Beam to 2.32.0
TCOMP-2007: connectors as a json object in Environment
TCOMP-2009: Upgrade dockerfile-maven-plugin to 1.4.13
TCOMP-2016: UiSchema can’t hold advanced titleMap for more advanded datalist widgets
TCOMP-2007: connectors as a json object in Environment
TCOMP-1957: Avro schema builder issue
TCOMP-1994: WebSocketClient$ClientException when executing action in Studio
TCOMP-1923: Record : add metadata
TCOMP-1990: Update jsoup to 1.14.2 due to CVE-2021-37714
TCOMP-1991: Update groovy to 3.0.9 due to CVE-2021-36373 / CVE-2021-36374
TCOMP-1992: Update lombok to 1.18.20
TCOMP-1993: Update TSBI to 2.9.0-20210907155713
TCOMP-1995: Expose the connectors (global) version in the "Environment" response
TCOMP-1996: BaseService must not define equals & hashcode
TCOMP-1994: WebSocketClient$ClientException when executing action in Studio
TCOMP-1904: Delegate Avro record in AvroRecord seems to be invalid
TCOMP-1967: goal uispec generation failure
TCOMP-1983: fix module inclusion in dependencies.txt when build is java9+
TCOMP-1981: Allow to filter artifacts in car file generation
TCOMP-1982: Allow to include extra artifacts in car file generation
TCOMP-1876: Make schemaImpl immutable
TCOMP-1885: Service Serializable
TCOMP-1906: Redefine equals on RecordImpl
TCOMP-1955: Upgrade cxf to 3.4.4 due to CVE-2021-30468
TCOMP-1966: Upgrade Tomcat to 9.0.50 due to CVE-2021-33037
TCOMP-1968: Upgrade maven to 3.8.1
TCOMP-1969: Upgrade Beam to 2.31.0
TCOMP-1970: Upgrade jackson to 2.12.1
TCOMP-1971: Upgrade Junit to 5.8.0-M1
TCOMP-1972: Upgrade slf4j to 1.7.32
TCOMP-1973: Upgrade log4j to 2.14.1
TCOMP-1974: Upgrade commons-compress to 1.21 due to CVE-2021-36090
TCOMP-1975: Upgrade TSBI to 2.8.2-20210722144648
TCOMP-1976: Upgrade meecrowave to 1.2.11
TCOMP-1977: Upgrade OpenWebBeans to 2.0.23
TCOMP-1978: Upgrade tomcat to 9.0.44
TCOMP-1979: Upgrade xbean to 4.20
TCOMP-1980: Upgrade meecrowave to 1.2.12
TCOMP-1967: goal uispec generation failure
TCOMP-1935: After Variables doesn’t support custom object types
TCOMP-1941: Maven goal talend-component:web fails on startup
TCOMP-1947: Implement a retry strategy on failure in vault-client
TCOMP-1948: Raised exception in component-server(s) should be serialized in json
TCOMP-1952: IllegalArgumentException when the http response return duplicated header.
TCOMP-1939: Upgrade TSBI to Talend 2.7.2-20210616074048
TCOMP-1940: Upgrade Beam to 2.30.0
TCOMP-1941: Maven goal talend-component:web fails on startup
TCOMP-1939: Upgrade TSBI to Talend 2.7.2-20210616074048
TCOMP-1919: Sanitize must force encoding file
TCOMP-1925: Incorrect mapping of the parameters after arrays
TCOMP-1937: Classpath not fully parsed in TSBI images
TCOMP-1917: Add DatasetDiscovery annotation
TCOMP-1707: Upgrade Geronimo :: Simple JCache to 1.0.5
TCOMP-1850: component-server with vault feature
TCOMP-1907: Service monitor implementation & cleaning of grafana dashboard
TCOMP-1921: Upgrade TSBI to 2.7.0-20210527090437
TCOMP-1930: Remove jsoup 1.7.x transitive dependency due to CVE-2015-6748
TCOMP-1936: Extend properties in Schema to use JsonValue
TCOMP-1938: Add the german locale in the locale mapping
TCOMP-1938: Add the german locale in the locale mapping
TCOMP-1937: Classpath not fully parsed in TSBI images
TCOMP-1919: Sanitize must force encoding file
TCOMP-1886: Errors on Schema.sanitizeConnectionName
TCOMP-1905: component-runtime fails to build with Java 11
TCOMP-1893: Upgrade to Beam 2.29.0 and use Beam’s Spark 3 specific module
TCOMP-705: Support After variables
TCOMP-1898: Add method to Record.Builder
TCOMP-1910: Upgrade commons-io to 2.8.0 due to CVE-2021-29425
TCOMP-1911: Upgrade cxf to 3.4.3 due to CVE-2021-22696
TCOMP-1912: Upgrade TSBI to 2.6.7-20210503202416
TCOMP-1938: Add the german locale in the locale mapping
TCOMP-1937: Classpath not fully parsed in TSBI images
TCOMP-1880: Engine Server returns binary data instead of json (aka does not respect the compressed header)
TCOMP-1886: Errors on Schema.sanitizeConnectionName
TCOMP-1815: Support of ComponentException in migration
TCOMP-1873: Add method getEntry on TCK Record Schema class
TCOMP-1892: Upgrade Spark to 3.0.1
TCOMP-1888: Remove/change validation of ComponentException
TCOMP-1894: Uniformize docker images entrypoints
TCOMP-1895: Enhance coercion in RecordConverters
TCOMP-1896: Upgrade TSBI to 2.6.4-20210331133410
TCOMP-1806: Double values are rounded to 5 decimal places in studio
TCOMP-1851: HttpClient implementation class is a Service with State
TCOMP-1864: JsonSchemaConverter and johnzon-jsonschema 1.2.9+ look incompatible
TCOMP-1866: Invalid number coercion on primitive type
TCOMP-1869: byte[] handling is incorrect in dynamic column
TCOMP-1871: Dynamic metadata name is not sanitized
TCOMP-1861: Add a 'props' property in the Schema
TCOMP-1863: Upgrade batik-codec to 1.14 due to CVE-2020-11988
TCOMP-1865: Upgrade cxf to 3.4.2
TCOMP-1867: Upgrade Apache Beam to 2.28.0
TCOMP-1878: Upgrade TSBI to 2.6.3-20210304090015
TCOMP-1688: Rewrite JsonSchema required rules to reflect component’s validation rules
TCOMP-1857: Pojo conversion don’t support nested Objects
TCOMP-1841: Add a SPI that would allow to add metadata to components
TCOMP-1847: Upgrade Apache Beam to 2.27.0
TCOMP-1848: Upgrade bouncycastle to 1.68 due to CVE 2020-28052
TCOMP-1849: Proxify metrics component-server’s endpoint
TCOMP-1852: Upgrade netty to v4.1.58.Final and ensure default http testing module is java 11 friendly over ssl
TCOMP-1854: Upgrade netty to 4.1.59.Final due to CVE-2021-21290
TCOMP-1855: Upgrade johnzon to 1.2.10
TCOMP-1856: Upgrade tomcat to 9.0.43
TCOMP-1841: Add a SPI that would allow to add metadata to components
TCOMP-1852: Upgrade netty to v4.1.58.Final and ensure default http testing module is java 11 friendly over ssl
TCOMP-1854: Upgrade netty to 4.1.59.Final due to CVE-2021-21290
TCOMP-1848: Upgrade bouncycastle to 1.68 due to CVE 2020-28052
TCOMP-1839: Tomcat websocket server fails to start after tomcat 9.0.40 and meecrowave 1.2.10
TCOMP-1836: Upgrade OpenWebBeans to 2.0.20
TCOMP-1837: Upgrade xbean to 4.18
TCOMP-1838: Upgrade cxf to 3.4.1
TCOMP-1840: Upgrade tomcat to 9.0.41
TCOMP-1842: Upgrade jgit to 5.10.0.202012080955-r
TCOMP-1844: Upgrade johnzon to 1.2.9
TCOMP-1845: Upgrade guava to 30.1-jre due to CVE-2020-8908
TCOMP-1848: Upgrade bouncycastle to 1.68 due to CVE 2020-28052
TCOMP-1839: Tomcat websocket server fails to start after tomcat 9.0.40 and meecrowave 1.2.10
TCOMP-1836: Upgrade OpenWebBeans to 2.0.20
TCOMP-1837: Upgrade xbean to 4.18
TCOMP-1827: Upgrade lombok to 1.18.16
TCOMP-1828: Change project’s versioning scheme
TCOMP-1829: Upgrade TSBI to 2.5.3-20201201131449
TCOMP-1830: Upgrade Apache Beam to 2.26.0
TCOMP-1832: Upgrade httpclient to 4.5.13 due to CVE-2020-13956
TCOMP-1833: Upgrade spark to 2.4.7
TCOMP-1834: Upgrade groovy to 3.0.7 due to CVE-2020-17521
TCOMP-1787: ComponentManager can’t be re-created after it’s been closed
TCOMP-1788: Invalid properties validation
TCOMP-1801: Can’t look for resources in the classpath on Windows
TCOMP-1761: Support of complete schema definition
TCOMP-1725: Upgrade Tomcat to 9.0.40
TCOMP-1792: Uniform error message on component validation
TCOMP-1808: Upgrade log4j2 to 2.14.0
TCOMP-1809: Update CXF to 3.3.8 due to CVE-2020-13954
TCOMP-1812: Upgrade junit to 4.13.1 due to CVE-2020-15250
TCOMP-1813: Upgrade jupiter to 5.7.0
TCOMP-1816: Apache Maven Shared Utils: OS Command Injection in Talend/component-runtime (master) and Talend/cloud-components
TCOMP-1817: Upgrade gmavenplus-plugin to 1.11.0
TCOMP-1722: REST - Last / in endpoint is removed
TCOMP-1757: Studio - context not set when call a @suggestable service
TCOMP-1772: Code widget doesn’t allow multiline text
TCOMP-1726: Update logos and colors
TCOMP-1771: Record builder optimization (with static schema)
TCOMP-1773: Upgrade log4j2 to 2.13.3
TCOMP-1774: Upgrade johnzon to 1.2.8
TCOMP-1775: Upgrade commons-lang3 to 3.11
TCOMP-1776: Upgrade commons-codec to 1.15
TCOMP-1777: Upgrade jgit to 5.9.0.202009080501-r
TCOMP-1778: Upgrade jib-core to 0.15.0
TCOMP-1779: Upgrade batik to 1.13
TCOMP-1780: Upgrade TSBI to 2.4.0-20200925092052
TCOMP-1781: Upgrade asciidoctorj to 2.4.1
TCOMP-1782: Upgrade rrd4j to 3.7
TCOMP-1783: Upgrade netty to 5.0.0.Alpha2
TCOMP-1784: Upgrade ziplock to 8.0.4
TCOMP-1785: Upgrade JRuby to 9.2.13.0
TCOMP-1786: Upgrade to Apache Beam 2.24.0
TCOMP-1804: Upgrade to Apache Beam 2.25.0
TCOMP-1805: Upgrade TSBI to 2.5.0-20201030171201
TCOMP-1770: Performance loss on Ouput components in Studio
TCOMP-1750: Deadlock at TPD job startup using the Component SDK and using the Workday component
TCOMP-1759: Guess schema mixes columns returned by tck service
TCOMP-1752: Make component-runtime class loader find classes in RemoteEngine JobServer
TCOMP-1764: Upgrade to Apache Beam 2.23.0
TCOMP-1719: Header responses for icon not propagated correctly from Component-server-vault-proxy
TCOMP-1733: NPE in Studio metadata connection with activeif on different layouts
TCOMP-1734: Studio froze when installing a patch with azure-dls-gen2-1.10.0-component.car
TCOMP-1736: JobImpl retrieves more than streaming.maxRecords parameter
TCOMP-1739: Use scala version defined on parent for Spark related components
TCOMP-1695: Support List type in Studio
TCOMP-1737: Allow to force installation of an already existing component with the car bundle
TCOMP-1728: Enforce use of the defined error contract in connectors
TCOMP-1731: Make connectors docker image TSBI compliant
TCOMP-1738: Upgrade to Apache Beam 2.22.0
TCOMP-1742: Upgrade johnzon to 1.2.7
TCOMP-1727: WebSocketContainer not present in ServletContext
TCOMP-1696: Definition of an error contract to handle expected errors
TCOMP-1729: Upgrade to Apache Beam 2.21.0
TCOMP-1730: Upgrade johnzon to 1.2.6
TCOMP-1719: Header responses for icon not propagated correctly from Component-server-vault-proxy
TCOMP-1649: Tomcat bump to 9.0.31 broke talend-component:web goal
TCOMP-1676: Starter-toolkit mvn package throws error when running for the first time
TCOMP-1677: Using other types than String in Studio’s context values causes compilation error
TCOMP-1679: Combination of @Required and @Suggestable on a field creates strange behaviour
TCOMP-1682: Remove key attribute in UISchema for containers
TCOMP-1686: antora helper function relativize corrupts documentation
TCOMP-1694: [MAVEN PLUGIN] validateSvg argument is ineffective
TCOMP-1698: UiSpecService injects a wrong property for suggestions and dynamic_values
TCOMP-1718: Duplicated code in RecordConverters
TCOMP-1702: Improve columns name
TCOMP-1655: Upgrade jib-core to 0.13.1
TCOMP-1656: Upgrade log4j2 to 2.13.1
TCOMP-1657: Upgrade maven to 3.6.3
TCOMP-1658: Upgrade groovy to 3.0.2
TCOMP-1659: Upgrade lombok to 1.18.12
TCOMP-1660: Upgrade commons-compress to 1.20
TCOMP-1661: Upgrade commons-codec to 1.14
TCOMP-1662: Upgrade guava to 28.2-jre
TCOMP-1663: Upgrade ziplock to 8.0.1
TCOMP-1664: Upgrade asciidoctorj to 2.2.0 and its dependencies
TCOMP-1665: Upgrade jackson to 2.10.3
TCOMP-1666: Upgrade batik-codec to 1.12
TCOMP-1667: Upgrade jgit to 5.6.1.202002131546-r
TCOMP-1668: Upgrade junit to 4.13
TCOMP-1669: Upgrade bouncycastle to 1.64
TCOMP-1670: Upgrade spark-core_2.11 to 2.4.5
TCOMP-1671: Upgrade maven-shade-plugin to 3.2.2
TCOMP-1672: Upgrade httpclient to 4.5.12
TCOMP-1673: Upgrade component-runtime-testing dependencies
TCOMP-1674: Upgrade tomitribe-crest to 0.14
TCOMP-1678: Upgrade jgit to 5.7.0.202003090808-r
TCOMP-1685: Provide docker images based on TSBI
TCOMP-1687: More explicit exception messsage on reflection for findField
TCOMP-1690: Upgrade netty to 4.1.48.Final
TCOMP-1692: Update CXF to 3.3.6 due to CVE-2020-1954
TCOMP-1697: Update BouncyCastle to 1.65
TCOMP-1703: Upgrade log4j-2 to 2.13.2
TCOMP-1705: Upgrade to Apache Beam 2.20.0
TCOMP-1706: Upgrade OpenWebBeans to 2.0.16
TCOMP-1708: Upgrade groovy to 3.0.3
TCOMP-1710: Upgrade johnzon to 1.2.5
TCOMP-1711: Upgrade guava to 29.0-jre
TCOMP-1712: Upgrade commons-lang3 to 3.10
TCOMP-1713: Upgrade jackson to 2.11.0
TCOMP-1714: Upgrade junit to 5.7.0-M1
TCOMP-1716: Upgrade maven shade plugin to 3.2.3 and misc libs
TCOMP-1639: component-server incorrect response set in request
TCOMP-1640: Ensure Intellij plugin works with Intellij Idea IU-201
TCOMP-1641: Upgrade OpenWebBeans to 2.0.15
TCOMP-1642: Upgrade Groovy to 3.0.1
TCOMP-1643: Add automatic scheduling eviction system on LocalCache
TCOMP-1644: Upgrade log4j to 2.13.0
TCOMP-1645: Ensure correct wording is used in @Documentation
TCOMP-1647: Upgrade netty to 4.1.45.Final
TCOMP-1648: Unsafe Dependancy Resolution on jcommander
TCOMP-1638: Inject services to delegate in proxy
TCOMP-1619: Handle correctly DATETIME field type on AvroRecord
TCOMP-1622: [DOC] @Icon is not supported on datastore/dataset
TCOMP-1623: Change scheme for maven repos
TCOMP-1628: Manage BigDecimal in RecordConverter
TCOMP-1629: Ensure LocalConfiguration environment source replace dot with _
TCOMP-1630: Avoid NPE when configurationByExample() is called in a list of primitive without values
TCOMP-1631: int attribute in pojo is transformed to double in a Record
TCOMP-1632: Add a way to evict cached data from LocalCache
TCOMP-1616: Upgrade OpenWebBeans to 2.0.14 in component-server and component-server-vault-proxy
TCOMP-1617: Move mocked api results to github pages
TCOMP-1618: Upgrade Junit to 5.6.0
TCOMP-1620: Upgrade to Apache Beam 2.18.0
TCOMP-1621: Upgrade to Johnzon 1.2.3
TCOMP-1624: @Service does not support list injections
TCOMP-1625: Upgrade to xbean 4.16
TCOMP-1626: Ensure ContainerListenerExtensions can be sorted
TCOMP-1627: Upgrade to Apache Beam 2.19.0
TCOMP-1633: Upgrade Groovy to 3.0.0
TCOMP-1634: Upgrade tomcat to 9.0.31
TCOMP-1596: Windows URI are broken
TCOMP-1597: Httpclient does not support multi query parameters
TCOMP-1598: validator task uses ENGLISH locale to validate instead of root one
TCOMP-1612: Starter toolkit shouldn’t use the default 'STAR' icon in demo component
TCOMP-1585: Upgrade netty to 4.1.43.Final
TCOMP-1586: Upgrade ziplock to v8.0.0
TCOMP-1587: Upgrade jib to v0.12.0
TCOMP-1588: Upgrade JRuby to v9.2.9.0
TCOMP-1589: Upgrade crest to v0.11.0
TCOMP-1591: Update to Tomcat 9.0.29
TCOMP-1592: Update to Johnzon 1.2.2
TCOMP-1593: Update to OpenWebBeans 2.0.13
TCOMP-1595: Infinite partitionmapper shouldn’t require assesor
TCOMP-1599: More unsafe usage tolerance on JVM versions
TCOMP-1600: Upgrade to Tomcat 9.0.30
TCOMP-1606: Ensure job dsl can stop infinite inputs
TCOMP-1608: Upgrade geronimo openapi to 1.0.12
TCOMP-1609: Ensure Intellij plugin works with Intellij Idea 2019
TCOMP-1611: Upgrade to Apache Beam 2.17.0
TCOMP-1613: Upgrade cxf to 3.3.5
TCOMP-1614: Upgrade groovy to 3.0.0-rc3
TCOMP-1615: Upgrade OpenWebBeans to 2.0.14
TCOMP-1560: Min and Max error message during configuration validation are reversed
TCOMP-1563: Web Tester does not work anymore (maven/gradle goal/task)
TCOMP-1573: Body encoder is called twice for each query
TCOMP-1582: Deploy to Nexus 3.15 caused "Provided url doesn’t respond neither to Nexus 2 nor to Nexus 3 endpoints"
TCOMP-1576: Add the possibility to desactivate http client redirection in HTTP Configurer
TCOMP-1559: Support configuration of the maxBatchSize enablement
TCOMP-1561: Custom action type shouldn’t need to be enforced to define a family method
TCOMP-1562: Support JsonObject type in actions
TCOMP-1564: Move to java.nio.Path instead of java.io.File in component-runtime-manager stack where possible
TCOMP-1565: Upgade to Junit Jupiter 5.6.0-M1
TCOMP-1566: Don’t compute jvmMarkers per component module but once for all
TCOMP-1567: Cache Artifact path in case of reuse
TCOMP-1568: Lazily create the container services
TCOMP-1569: Upgrade starter to gradle 6.0-rc1
TCOMP-1570: Ensure starter adds _placeholder entries in Messages.properties
TCOMP-1571: Support [length] syntax to change array configuration
TCOMP-1572: Validate that @Option is not used on final fields
TCOMP-1574: Upgrade to CXF 3.3.4
TCOMP-1575: Upgrade to Spark 2.4.4
TCOMP-1577: Upgrade to xbean 4.15
TCOMP-1578: Upgrade asciidoctor-pdf to v1.5.0-beta.7
TCOMP-1581: Support JUnit5 meta annotations for our extensions
TCOMP-1752: Make component-runtime class loader find classes in RemoteEngine JobServer
TCOMP-1702: Improve columns name
TCOMP-1685: Provide docker images based on TSBI
TCOMP-1558: org.talend.sdk.component.api.service.record.RecordService must be serializable
TCOMP-1548: Basic Remote Engine Customizer
TCOMP-1550: Component configuration instantiation can be slow for complex configurations
TCOMP-1551: ObjectFactory should default to fieldproperties when field injection is activated
TCOMP-1553: Simplify and widden excluded classes for with transformer support
TCOMP-1555: Upgrade to Tomcat 9.0.27
TCOMP-1556: Studio short, byte, BigDecimal and char types are wrong handled
TCOMP-1557: Upgrade to Beam 2.16.0
TCOMP-1509: Intellij plugin does not declare java module preventing the plugin to run under last versions
TCOMP-1526: Upgrade talend UI bundle (js) to 4.6.0
TCOMP-1533: JSON-B API does not enable to combine multiple adapters or (de)serializers in JsonbConfig
TCOMP-1536: @DefaultValue ignored in documentation generation
TCOMP-1541: Studio integration enforces JSON<→Record conversion instead of relying on rowStruct making number precision lost
TCOMP-1542: Validator plugin uses family instead of pluginId (artifactId) to validate local-configuration
TCOMP-1508: Don’t let Talend Starter Toolkit loose state on Enter in intellij
TCOMP-1543: Add a uispec mapper
TCOMP-1544: Update Geronimo JSON-P spec bundle to v1.3
TCOMP-1545: Update OpenWebBeans to version 2.0.12
TCOMP-1546: Update Meecrowave to 1.2.9
TCOMP-1547: Update Johnzon to 1.2.1
TCOMP-1279: Rewrite the pojo <→ record mapping to keep number types
TCOMP-1504: Apache Beam 2.14.0 upgrade
TCOMP-1505: Upgrade jackson-databind to 2.9.9.3
TCOMP-1506: Enable actions in bulk endpoint
TCOMP-1507: Upgrade to johnzon 1.1.13
TCOMP-1511: Upgrade cxf to v3.3.3
TCOMP-1513: Upgrade to Tomcat 9.0.24
TCOMP-1514: Provide a RecordService to simplify record enrichment coding in processors
TCOMP-1515: Record visitor API
TCOMP-1517: Use netty 4.1.39.Final in junit http tools
TCOMP-1518: Upgrade to slf4j 1.7.28
TCOMP-1519: Upgrade to jib-core 0.10.1
TCOMP-1520: Don’t use JsonNode with Avro Fields anymore
TCOMP-1521: Upgrade to Beam 2.15.0
TCOMP-1522: Basic singer/tap/stitch integration with kit components
TCOMP-1523: Upgrade Apache Geronimo OpenAPI to v1.0.11
TCOMP-1524: Upgrade starter to gradle 5.6
TCOMP-1525: Upgrade commons-compress to v1.19
TCOMP-1527: Remove beam Mapper/Processor wrapping support
TCOMP-1528: Upgrade to maven 3.6.2
TCOMP-1529: Asciidoctor 2.1.0 upgrade
TCOMP-1530: geronimo-annotation 1.2 upgrade
TCOMP-1532: Upgrade to Junit 5.5.2
TCOMP-1535: Upgrade to johnzon 1.2.0
TCOMP-1537: Upgrade to Tomcat 9.0.26
TCOMP-1538: Upgrade to jackson 2.9.10
TCOMP-1539: Rework default direct runner/spark classloader rules
TCOMP-1540: Ensure Asciidoctor documentation rendering releases properly JRuby threads (main usage only)
TCOMP-1478: /documentation/component/{id} internationalization does not work when embedded
TCOMP-1479: When generating the documentation, it can happen the lang is wrong due to ResourceBundle usage
TCOMP-1480: Servers docker images don’t have curl or wget available
TCOMP-1497: POJO to Record mapping is not supported in processors
TCOMP-1498: SVG2Mojo wrongly log the source file as being created
TCOMP-1499: component-form does not support array of object of object if 2 levels use the same field name
TCOMP-1500: Ensure component-form button have a key to have an id and propagate errors in the front
TCOMP-1503: EnvironmentSecuredFilter not working on /environment/
TCOMP-1482: Enable web tester to switch the language
TCOMP-1483: Enable to expose the documentation through the web tester
TCOMP-1485: Asciidoctor documentation does not enable titles (component name and configuration ones) to be translated
TCOMP-1486: Ensure locale mapping is configurable in component-server
TCOMP-1484: Junit 5.5.0 upgrade
TCOMP-1487: AsciidocMojo should only use ROOT locale by default
TCOMP-1488: Enable to translate gridlayout names
TCOMP-1489: Upgrade Tomcat to v9.0.22
TCOMP-1491: Upgrade JIB to v1.4.0
TCOMP-1492: Upgrade jackson-databind to 2.9.9.1
TCOMP-1493: Rewrite component exception to ensure they can be loaded after a serialization
TCOMP-1494: Upgrade to junit jupiter 5.5.1
TCOMP-1495: Upgrade to Geronimo OpenAPI 1.0.10
TCOMP-1496: [testing tool] MainInputFactory does not support Record
TCOMP-1501: Remove generate mojo
TCOMP-1502: [maven plugin] upgrade jib-core to 0.10.0
TCOMP-1469: Studio maven repository not found OOTB
TCOMP-1472: Connectors maven goal does not work in 1.1.10
TCOMP-1473: Docker image text log setup should use ISO8601 and not HH:mm:ss.SSS
TCOMP-1470: Upgrade Tomcat to v9.0.21
TCOMP-1471: Upgrade Geronimo OpenAPI to v1.0.9
TCOMP-1474: Ensure proxies definition are java >=11 friendly
TCOMP-1425: Spark classes not excluded anymore in component-runtime-beam leading to classloading issues
TCOMP-1427: dependencies.txt mojo uses timestamped versions for snapshots instead of just -SNAPSHOT
TCOMP-1431: [maven] Asciidoctor files should be attached with adoc extension and not jar one
TCOMP-1433: [form-model] itemwidget ignored from uischema builder
TCOMP-1438: Index cache can lead to invalid index list of component
TCOMP-1440: Bulk components without @ElementListener when used with component-extension (default in the server)
TCOMP-1441: Missing parameter init in the UiSchema Trigger builder
TCOMP-1446: Rework gradle lifecycle
TCOMP-1419: Upgrade build to groovy 2.5.7
TCOMP-1420: Upgrade maven compiler to 3.1.2
TCOMP-1422: Filter allowed beam classes in component-server image
TCOMP-1423: Enable to customize studio maven repository for deploy-studio maven and gradle goal/task
TCOMP-1426: Ensure Spark rule and @WithSpark uses a default version consistent with the runtime
TCOMP-1430: Deprecate built-in icons in favor of vendor specific icons
TCOMP-1432: basic dita generation for the component documentation
TCOMP-1434: [form-model] Add withCondition to UISchema builder
TCOMP-1435: Dont use beam_sdks_java_core shaded libraries
TCOMP-1437: Add infinite metadata to ComponentDetail
TCOMP-1444: Remove KnownJarsFilter since it is no more used to discover components
TCOMP-1445: Icon must support SVG
TCOMP-1448: [starter] provide a basic OpenAPI integration
TCOMP-1449: Upgrade XBean to v4.14
TCOMP-1450: Add a read-only bulk endpoint in component-server
TCOMP-1451: [upgrade] Johnzon 1.1.12
TCOMP-1452: [upgrade] Meecrowave 1.2.8
TCOMP-1453: Upgrade to CXF 3.3.2
TCOMP-1455: Prepare DateTime support in configurations
TCOMP-1457: Upgrade to Apache Beam 2.13.0
TCOMP-1458: Ensure _placeholder presence is encouraged and validated
TCOMP-1459: Experimental way to patch a component dependency
TCOMP-1461: Extension API for the validator plugin
TCOMP-1462: Validate through the corresponding build task provided SVG
TCOMP-1464: Upgrade to OpenWebBeans 2.0.11
TCOMP-1465: Upgrade to JUnit 5.5.0-RC1
TCOMP-1466: Upgrade to ziplock 8.0.0-M2
TCOMP-1467: Upgrade mock server (testing tool) to netty 5.0.0.Alpha2
TCOMP-1468: Support docker-compose >= 1.23 in vault-proxy
TCOMP-1374: ensure Utf8 avro strings don’t leak in AvroRecord API, even using get(Object.class, …)
TCOMP-1375: When two sources use the same dataset and one source has additional required parameter the validation fails
TCOMP-1384: Enhance studio guess schema algorithm to find implicitly the action to call if needed
TCOMP-1388: Can’t change the dataset name in starter
TCOMP-1389: Intellij starter fails to generate a project
TCOMP-1398: Using after option of @updateable can lead to a null pointer exception in component-form
TCOMP-1401: Documentation table is broken
TCOMP-1407: Databricks: interface javax.json.stream.JsonGeneratorFactory is not visible from class loader
TCOMP-1386: Add withRecord(String,Record) in Record.Builder
TCOMP-1387: Use icon bundle version 3.1.0
TCOMP-1412: Add rest and couchbase icon to component api
TCOMP-1376: Upgrade jupiter to 5.4.2
TCOMP-1385: talend.component.server.component.registry must be a list
TCOMP-1390: Move component-api to component-runtime repository
TCOMP-1392: Tomcat 9.0.19 upgrade
TCOMP-1402: Provide a placeholder for classpath extensions in docker images
TCOMP-1403: Upgrade asciidoctor to 2.0.0 and asciidoctor-pdf to alpha17
TCOMP-1404: Upgrade to Apache Beam 2.12.0
TCOMP-1408: Starter does not support types starting with a lowercase
TCOMP-1411: ComponentManager relies on beam jar name. This is unlikely and should move to beam integration module.
TCOMP-1417: Upgrade to Geronimo OpenAPI 1.0.8
TCOMP-1326: Avro Schema is not serializable as JSON so guess schema action does not work when compoennt-runtime-beam is present
TCOMP-1330: Shade extensions don’t inherit from pluginrepositories
TCOMP-1340: Tools webapp (talend-component:web) does not support changing the locale anymore
TCOMP-1343: Use LogicalTypes.timestampMillis() on DATETIME for avro record builder
TCOMP-1360: Renaming an option (@Option("custom")) does not work on fields of type object
TCOMP-1370: ImageM2Mojo does not set timestamp in the docker image leading to component-server having a wrong lastUpdated value
TCOMP-1372: Nested components don’t expose their doc deterministicly until it is overriden
TCOMP-1341: Register deploy in studio task OOTB in gradle extension
TCOMP-1325: Upgrade CXF to 3.3.1
TCOMP-1327: /environment iterates over deployed plugin for each call, this is not needed
TCOMP-1328: Upgrade to Beam 2.11.0
TCOMP-1329: Lazy initialize parameter model to have a quicker cold start in plain main(String[])
TCOMP-1331: Use java 8u191 as base docker image
TCOMP-1332: Provide a simple way to filter configurations and component on /index endpoints
TCOMP-1334: Add a mojo to generate the list of components/services classes
TCOMP-1335: Add in doc mojo table the type of configuration the parameter belongs to
TCOMP-1336: Allow output processors to only have an @AfterGroup taking the list of record of the group in parameter
TCOMP-1346: Upgrade to Tomcat 9.0.17
TCOMP-1347: Upgrade to Slf4j 1.7.26
TCOMP-1348: [form-core] Ensure suggestions trigger is bound to "change" event too
TCOMP-1349: [form-core] When a tab is empty, don’t show it
TCOMP-1350: talend.component.server.component.registry should support glob pattern
TCOMP-1351: Upgrade jsoup for Spark Cluster Testing module
TCOMP-1353: component-server must not use TALEND-INF/dependencies.txt but another path
TCOMP-1354: Enforce services to belong to the delcaring service class
TCOMP-1361: Upgrade to asciidoctorj 2.0.0-RC.1
TCOMP-1362: Beam Wrapped Components should throw shared exception types
TCOMP-1366: Upgrade to XBean 4.13 to not track all classes scanned
TCOMP-1371: Upgrade to Apache Geronimo OpenAPI 1.0.7
TCOMP-1307: support char and character types in configuration.
TCOMP-1312: Component-form-core shouldn’t trigger validation of object due to conditional visibility (only individual fields are validable)
TCOMP-1314: category field of the starter is broken
TCOMP-1316: [build] Ensure snapshot use timestamped versions in dependencies.txt
TCOMP-1306: Add RecordPointerFactory to enable to extract data from Record using json pointer spec
TCOMP-1315: Ensure @Internationalized can use shortnames too in Messages.properties
TCOMP-1303: Support docker configs/secrets in docker images
TCOMP-1304: Vault proxy should support token configuration
TCOMP-1305: Upgrade to beam 2.10.0
TCOMP-1308: Upgrade to Talend UI 2.6.0
TCOMP-1309: Upgrade to Component API 1.1.5
TCOMP-1310: Ensure there is a basic secured mecanism to store configuration data
TCOMP-1317: Use Apache Geronimo Microprofile Config extensions (docker and secured string)
TCOMP-1318: Upgrade to Apache Meecrowave 1.2.7
TCOMP-1319: Upgrade Apache Geronimo Metrics to 1.0.3
TCOMP-1320: Upgrade to Apache Geronimo OpenAPI 1.0.6
TCOMP-1321: Upgrade to Apache Geronimo OpenTracing 1.0.2
TCOMP-1322: Upgrade to Apache Geronimo Config 1.2.2
TCOMP-1263: When using @Updateable(after=xxx) the visibility condition (@ActiveIf) of the after field shouldn’t be inherited
TCOMP-1264: AvroSchema does not unwrap null(able types) to map to Schema model
TCOMP-1265: dataset / datastore cloud validation : allow nested configuration types
TCOMP-1267: /documentation does not filter properly component
TCOMP-1281: Add jackson-mapper-asl in docker image of the server
TCOMP-1298: Support restricted lists for @Proposable
TCOMP-1297: make max batch size property configurable for family and components through LocalConfiguration
TCOMP-1266: Enhance starter to support dataset and datastore
TCOMP-1268: Ensure /environment is not callable if not local or secured
TCOMP-1269: Ensure ErrorReportValve does not leak Tomcat version OOTB
TCOMP-1271: Upgrade to talend UI 2.3.0
TCOMP-1272: Move multiSelectTag to multiSelect for web environment
TCOMP-1273: [build/dev plugin] Automatically open the browser for talend-component:web task/goal
TCOMP-1276: Exclude xerces from component loadable resources for XMLReaderFactory
TCOMP-1282: Upgrade meecrowave to 1.2.6
TCOMP-1283: Upgrade cxf to 3.3.0
TCOMP-1284: Upgrade to johnzon 1.1.11
TCOMP-1292: Provide a vault friendly integration for the server
TCOMP-1293: Upgrade to Tomcat 9.0.16
TCOMP-1295: Ensure local-configuration.properties of a container are merged
TCOMP-1296: Ensure user can enrich families with custom jar+configuration
TCOMP-1245: Provided services (SPI) by tacokit not available
TCOMP-1246: Rework docker image setup to use jib
TCOMP-1247: Upgrade geronimo metrics to 1.0.2
TCOMP-1248: Upgrade to geronimo opentracing 1.0.3
TCOMP-1249: Provide segment extractor for doc endpoint
TCOMP-1250: Make component documentation (@Documentation on component) i18n friendly
TCOMP-1251: cache avrocoders used in SchemaRegistryCoder
TCOMP-1252: Remove html support in documentation endpoint
TCOMP-1253: Refine OpenAPI documentation
TCOMP-1256: Add mapDescriptorToClassLoader to create a classloader from a list of gav
TCOMP-1258: Support to build a Record from a provided Schema
TCOMP-1259: Add getOptional to Record
TCOMP-1223: byte[] not supported in AvroRecord (beam)
TCOMP-1222: Ensure @WithComponents and @Environment are compatible
TCOMP-1234: Upgrade to beam 2.9.0
TCOMP-1235: Upgrade to antora 2
TCOMP-1237: Upgrade component-api to 1.1.2
TCOMP-1238: Upgrade metrics and opentracing microprofile libraries in docker image to use Geronimo extensions
TCOMP-1239: OpenWebBeans 2.0.9 upgrade
TCOMP-1240: Johnzon 1.1.11 upgrade
TCOMP-1242: Runtime validation error message wrongly interpolated
TCOMP-1243: Ensure component classloader isolates the system classloader resources except for the JVM ones
TCOMP-1170: [regression] http testing module pom imports netty and jsonb stack
TCOMP-1181: tacokit can’t pass the long type field from ui rightly
TCOMP-1187: Job DSL does not support correctly parameters when they are URI/URL
TCOMP-1189: Ensure primitive are not nullable in Record model (builder)
TCOMP-1191: [beam] BeamIOTransformer does not support serialization of complex objects correctly
TCOMP-1192: Ensure Avro schema union is interpreted as nullable in Record Schema model
TCOMP-1194: [testing] Ensure BeamEnvironment adds component-runtime-beam
TCOMP-1196: Nested maven repository not used for component module
TCOMP-1197: Tacokit beam tests. NPE when creating the schema with RECORD type.
TCOMP-1198: Tacokit beam tests. SchemaParseException ⇒ drop unsupported characters
TCOMP-1200: Packages not defined from nested repository classes
TCOMP-1201: includeTransitiveDependencies option of nested-maven-repository does not work
TCOMP-1202: Refine avro classloading exclusion to accept hadoop and mapred packages
TCOMP-1205: Empty JSon object lead to NPE
TCOMP-1209: Ensure SerializableCoder is replaced with a contextual version to support Talend Component Kit classloading model
TCOMP-1210: BeamComponentExtension should let the exception go back to the caller when the transform fails
TCOMP-1215: Nested maven repository in jars don’t go through transformers
TCOMP-1218: Record entries order shouldn’t be sorted by the runtime
TCOMP-1185: Support maxBatchSize in Job test runner for standalone mode
TCOMP-1171: Remove component proxy server from the project
TCOMP-1182: Ensure the property editor for the configuration registers the default converters
TCOMP-1183: Upgrade JRuby to 9.2.4.0
TCOMP-1184: Avoid to do a group by key in BeamExecutor (job DSL) when not needed
TCOMP-1188: Tolerate null for dates in Records
TCOMP-1190: Enable secure processing for DocumentBuilderFactory instances
TCOMP-1193: Add injectable ContainerInfo with the containerId (plugin) in services
TCOMP-1195: Enable user to extend BeamEnvironment test tempalte more easily
TCOMP-1199: Nested repository not used when the classpath is not composed of a single jar
TCOMP-1204: [dependency upgrade] XBean 4.12
TCOMP-1207: [beam] add ContextualSerializableCoder
TCOMP-1213: Upgrade guava to v27 for testing modules
TCOMP-1216: Take into account the visibility for the parameter validation
TCOMP-1217: Add JVM system property talend.component.runtime.serialization.java.inputstream.whitelist for our custom object input stream
TCOMP-1219: Upgrade starter to gradle 5
TCOMP-1220: Upgrade Maven to 3.6.0 in starter
TCOMP-1121: [tacokit proxy] suggestion trigger creation issue
TCOMP-1122: [tacokit proxy] slefRefrence filter configuration type by name, type and family
TCOMP-1123: Processor component onNext duplicate columns in record for rowStructs
TCOMP-1126: UiSpecService shouldn’t show the documentation by default
TCOMP-1129: form core - $selfReference breaks triggers
TCOMP-1130: component form - default value of maxBatchSize prop loose it type.
TCOMP-1131: [beam integration] Ensure Coder is contextual (classloader)
TCOMP-1132: Ensure beam custom Coders implement equals.hashCode for beam contract
TCOMP-1148: Asciidoctor documentation fails for collection of objects
TCOMP-1149: [testing] BeamEnvironment does not reset PipelineOptionsFactory properly for beam > 2.4
TCOMP-1155: [proxy server] arrays not supporting null values in ConfigurationFormatter
TCOMP-1159: AvroSchema does not support DATETTIME type (beam module)
TCOMP-1168: Avro record implementation ignores nullable/union
TCOMP-1143: Ensure icons are validated and fail the build if a custom one is missing (validate mojo)
TCOMP-1112: Let beam PTransform define an @ElementListener method to set the component design (inputs/outputs)
TCOMP-1113: Simplify the scanning by assuming there is a TALEND-INF/dependencies.txt in components
TCOMP-1120: BeamMapperImpl.isStream not accurate for UnboundedSource
TCOMP-1124: Add /metrics endpoint
TCOMP-1125: Extend CustomPropertyConverter to pass the convertion context
TCOMP-1127: Record doesn’t support null values
TCOMP-1133: CXF 3.2.7 upgrade
TCOMP-1134: Ensure any input/output have a dataset
TCOMP-1135: Ensure any dataset has a datastore
TCOMP-1136: deprecate "generate" mojo
TCOMP-1145: [dependency upgrade] Beam 2.8.0
TCOMP-1146: implement infinite=true in PartitionMapper/Input
TCOMP-1150: Upgrade rat plugin to 0.13
TCOMP-1154: Required validation at runtime ignores lists and nested objects
TCOMP-1157: [dependency upgrade] Tomcat 9.0.13
TCOMP-1158: Enable JUnit test collector to use a static storage instead of thread related one
TCOMP-1160: Upgrade spark to 2.4.0
TCOMP-1161: Upgrade shade plugin to 3.2.1
TCOMP-1162: Upgrade nested-maven-repository shade transformers to support last maven versions
TCOMP-1163: Upgrade openwebbeans to 2.0.8
TCOMP-1164: Validate mojo does not log any success information
TCOMP-1165: Dependency mojo does not log any success information
TCOMP-1166: Documentation mojo does not log generated files properly
TCOMP-1167: Beam-Avro record name generation should use avro fingerprint to be more unique than current logic
TCOMP-1086: Fix documentation about DiscoverSchema
TCOMP-1064: Update action can’t receive List
You can integrate and start using components developed using Talend Component Kit in Talend applications very easily. As both the development framework and Talend applications evolve over time, you need to ensure compatibility between the components you develop and the versions of Talend applications that you are targeting, by making sure that you use the right version of Talend Component Kit. The version of Talend Component Kit you need to use to develop new components depends on the versions of the Talend applications in which these components will be integrated. Talend product Talend Component Kit version Talend Studio 8.8.8 (aka master) latest release Talend Studio 8.0.1 latest release QA approved Talend Studio 7.3.1 Framework until 1.38.x Talend Studio 7.2.1 Framework until 1.1.10 Talend Studio 7.1.1 Framework until 1.1.1 Talend Studio 7.0.1 Framework until 0.0.5 Talend Cloud latest release QA and cloud teams approved More recent versions of Talend Component Kit contain many fixes, improvements and features that help developing your components. However, they can cause some compatibility issues when deploying these components to older/different versions of Talend Studio and Talend Cloud. Choose the version of Talend Component Kit that best fits your needs. Creating a project using the Component Kit Starter always uses the latest release of Talend Component Kit. However, you can manually change the version of Talend Component Kit directly in the generated project. Go to your IDE and access the project root .pom file. Look for the org.talend.sdk.component dependency nodes. Replace the version in the relevant nodes with the version that you need to use for your project. You can use a Snapshot of the version under development using the -SNAPSHOT version and Sonatype snapshot repository.
This tutorial walks you through the most common iteration steps to create a component with Talend Component Kit and to deploy it to Talend Open Studio.
The component created in this tutorial is a simple processor that reads data coming from the previous component in a job or pipeline and displays it in the console logs of the application, along with an additional information entered by the final user.
The component designed in this tutorial is a processor and does not require nor show any datastore and dataset configuration. Datasets and datastores are required only for input and output components.
To get your development environment ready and be able to follow this tutorial:
Download and install a Java JDK 1.8 or greater.
Download and install Talend Open Studio. For example, from Sourceforge.
Download and install IntelliJ.
Download the Talend Component Kit plugin for IntelliJ. The detailed installation steps for the plugin are available in this document.
The first step in this tutorial is to generate a component skeleton using the Starter embedded in the Talend Component Kit plugin for IntelliJ.
Start IntelliJ and create a new project. In the available options, you should see Talend Component.
Make sure that a Project SDK is selected. Then, select Talend Component and click Next. The Talend Component Kit Starter opens.
Enter the component and project metadata. Change the default values, for example as presented in the screenshot below:
The Component Family and the Category will be used later in Talend Open Studio to find the new component.
Project metadata is mostly used to identify the project structure. A common practice is to replace 'company' in the default value by a value of your own, like your domain name.
Once the metadata is filled, select Add a component. A new screen is displayed in the Talend Component Kit Starter that lets you define the generic configuration of the component. By default, new components are processors.
Enter a valid Java name for the component. For example, Logger.
Select Configuration Model and add a string type field named level. This input field will be used in the component configuration for final users to enter additional information to display in the logs.
In the Input(s) / Output(s) section, click the default MAIN input branch to access its detail, and make sure that the record model is set to Generic. Leave the Name of the branch with its default MAIN value.
Repeat the same step for the default MAIN output branch.
Because the component is a processor, it has an output branch by default. A processor without any output branch is considered an output component. You can create output components when the Activate IO option is selected.
Click Next and check the name and location of the project, then click Finish to generate the project in the IDE.
At this point, your component is technically already ready to be compiled and deployed to Talend Open Studio. But first, take a look at the generated project:
Two classes based on the name and type of component defined in the Talend Component Kit Starter have been generated:
LoggerProcessor is where the component logic is defined
LoggerProcessorConfiguration is where the component layout and configurable fields are defined, including the level string field that was defined earlier in the configuration model of the component.
The package-info.java file contains the component metadata defined in the Talend Component Kit Starter, such as family and category.
You can notice as well that the elements in the tree structure are named after the project metadata defined in the Talend Component Kit Starter.
These files are the starting point if you later need to edit the configuration, logic, and metadata of the component.
There is more that you can do and configure with the Talend Component Kit Starter. This tutorial covers only the basics. You can find more information in this document.
Without modifying the component code generated from the Starter, you can compile the project and deploy the component to a local instance of Talend Open Studio.
The logic of the component is not yet implemented at that stage. Only the configurable part specified in the Starter will be visible. This step is useful to confirm that the basic configuration of the component renders correctly.
Before starting to run any command, make sure that Talend Open Studio is not running.
From the component project in IntelliJ, open a Terminal and make sure that the selected directory is the root of the project. All commands shown in this tutorial are performed from this location.
Compile the project by running the following command: mvnw clean install. The mvnw command refers to the Maven wrapper that is embedded in Talend Component Kit. It allows to use the right version of Maven for your project without having to install it manually beforehand. An equivalent wrapper is available for Gradle.
Once the command is executed and you see BUILD SUCCESS in the terminal, deploy the component to your local instance of Talend Open Studio using the following command: mvnw talend-component:deploy-in-studio -Dtalend.component.studioHome="
To be able to see and use your newly developed components, you need to integrate them to the right application. Currently, you can deploy your components to Talend Studio as part of your development process to iterate on them: Iterating on component development with Talend Studio You can also share your components externally and install them using a component archive (.car) file. Sharing and installing components in Talend Studio Check the versions of the framework that are compatible with your version of Talend Studio in this document. If you were used to create custom components with the Javajet framework and want to get to know the new approach and main differences of the Component Kit framework, refer to this document.
From the version 7.0 of Talend Studio, Talend Component Kit becomes the recommended framework to use to develop components.
This framework is being introduced to ensure that newly developed components can be deployed and executed both in on-premise/local and cloud/big data environments.
From that new approach comes the need to provide a complete yet unique and compatible way of developing components.
With the Component Kit, custom components are entirely implemented in Java. To help you get started with a new custom component development project, a Starter is available. Using it, you will be able to generate the skeleton of your project. By importing this skeleton in a development tool, you can then implement the components layout and execution logic in Java.
With the previous Javajet framework, metadata, widgets and configurable parts of a custom component were specified in XML. With the Component Kit, they are now defined in the
Components built using Talend Component Kit can be shared as component archives (.car). These CAR files are executable files allowing to easily deploy the components it contains to any compatible version of Talend Studio. Component developers can generate .car files from their projects to share their components and make them available for other users, as detailed in this document. This document assumes that you have a component archive (.car) file and need to deploy it to Talend Studio. The component archive (.car) is executable and exposes the studio-deploy command which takes a Talend Studio home path as parameter. When executed, it installs the dependencies into the Studio and registers the component in your instance. For example: You can also upload the dependencies to your Nexus server using the following command: In this command, Nexus URL and repository name are mandatory arguments. All other arguments are optional. If arguments contain spaces or special symbols, you need to quote the whole value of the argument. For example: Talend Studio allows you to share components you have created using Talend Component Kit to other users working on the same remote project. Remote projects are available with Enterprise versions of Talend Studio only. Also, note that this feature has been removed in Studio since 7.3 release. Make sure you are connected to a remote project and the artifact repository for component sharing has been properly configured. On the toolbar of the Studio main window, click or click File > Edit Project Properties from the menu bar to open the Project Settings dialog box. In the tree view of the dialog box, select Repository Share to open the corresponding view. Select the Propagate components update to Artifact Repository check box. In the Repository ID field, specify the artifact repository configured for component sharing, and then click Check connection to verify the connectivity. Click Apply and Close to validate the settings and close the dialog box. Create a folder named patches at the root of your Talend Studio installation directory, then copy the .car files of the components you want share to this folder. Restart your Talend Studio and connect to the remote project. The components are deployed automatically to the repository and available in the Palette for other users when connected to a remote project with the same sharing repository configuration. My custom component builds correctly but does not appear in Talend Studio, how to fix it? This issue can be caused by the icon specified in the component metadata. Make sure to specify a custom icon for the component and the component family. These custom icons must be in PNG format to be properly handled by Talend Studio. Remove SVG parameters from the talend.component.server.icon.paths property in the HTTP server configuration. Refer to this section. Learn more about defining custom icons for components in this document.
Datasets and datastores are configuration types that define how and where to pull the data from. They are used at design time to create shared configurations that can be stored and used at runtime. All connectors (input and output components) created using Talend Component Kit must reference a valid dataset. Each dataset must reference a datastore. Datastore: The data you need to connect to the backend. Dataset: A datastore coupled with the data you need to execute an action. Make sure that: a datastore is used in each dataset. each dataset has a corresponding input component (mapper or emitter). This input component must be able to work with only the dataset part filled by final users. Any other property implemented for that component must be optional. These rules are enforced by the validateDataSet validation. If the conditions are not met, the component builds will fail. Make sure that: a datastore is used in each dataset. each dataset has a corresponding input component (mapper or emitter). This input component must be able to work with only the dataset part filled by final users. Any other property implemented for that component must be optional. These rules are enforced by the validateDataSet validation. If the conditions are not met, the component builds will fail. A datastore defines the information required to connect to a data source. For example, it can be made of: a URL a username a password. You can specify a datastore and its context of use (in which dataset, etc.) from the Component Kit Starter. Make sure to modelize the data your components are designed to handle before defining datasets and datastores in the Component Kit Starter. Once you generate and import the project into an IDE, you can find datastores under a specific datastore node. Example of datastore: A dataset represents the inbound data. It is generally made of: A datastore that defines the connection information needed to access the data. A query. You can specify a dataset and its context of use (in which input and output component it is used) from the Component Kit Starter. Make sure to modelize the data your components are designed to handle before defining datasets and datastores in the Component Kit Starter. Once you generate and import the project into an IDE, you can find datasets under a specific dataset node. Example of dataset referencing the datastore shown above: The display name of each dataset and datastore must be referenced in the message.properties file of the family package. The key for dataset and datastore display names follows a defined pattern: ${family}.${configurationType}.${name}._displayName. For example: These keys are automatically added for datasets and datastores defined from the Component Kit Starter. When deploying a component or set of components that include datasets and datastores to Talend Studio, a new node is created under Metadata. This node has the name of the component family that was deployed. It allows users to create reusable configurations for datastores and datasets. With predefined datasets and datastores, users can then quickly fill the component configuration in their jobs. They can do so by selecting Repository as Property Type and by browsing to the predefined dataset or datastore. Studio will generate connection and close components auto for reusing connection function in input and output components, just need to do like this example: Then the runtime mapper and processor only need to use @Connection to get the connection like this: The component server scans all configuration types and returns a configuration type index. This index can be used for the integration into the targeted platforms (Studio, web applications, and so on). Mark a model (complex object) as being a dataset. API: @org.talend.sdk.component.api.configuration.type.DataSet Sample: Mark a model (complex object) as being a datastore (connection to a backend). API: @org.talend.sdk.component.api.configuration.type.DataStore Sample: Mark a model (complex object) as being a dataset discovery configuration. API: @org.talend.sdk.component.api.configuration.type.DatasetDiscovery Sample: Mark a model (complex object) as being a checkpoint configuration and state. API: @org.talend.sdk.component.api.input.checkpoint.Checkpoint Sample: The component family associated with a configuration type (datastore/dataset) is always the one related to the component using that configuration. The configuration type index is represented as a flat tree that contains all the configuration types, which themselves are represented as nodes and indexed by ID. Every node can point to other nodes. This relation is represented as an array of edges that provides the child IDs. As an illustration, a configuration type index for the example above can be defined as follows:
Integrate components you developed using Talend Component Kit to Talend Studio in a few steps. Also learn how to enable the developer and debugging modes to iterate on your component development. The version of Talend Component Kit you need to use to develop new components depends on the version of Talend Studio in which components will be integrated. Refer to this document to learn about compatibility between Talend Component Kit and the different versions of Talend applications. Learn how to build and deploy components to Talend Studio using Maven or Gradle Talend Component Kit plugins. This can be done using the deploy-in-studio goal from your development environment. If you are unfamiliar with component development, you can also follow this example to go through the entire process, from creating a project to using your new component in Talend Studio. The Studio integration relies on the Component Server, that the Studio uses to gather data about components created using Talend Component Kit. You can change the default configuration of component server by modifying the $STUDIO_HOME/configuration/config.ini file. The following parameters are available: Name Description Default component.environment Enables the developer mode when set to dev - component.debounce.timeout Specifies the timeout (in milliseconds) before calling listeners in components Text fields 750 component.kit.skip If set to true, the plugin is not enabled. It is useful if you don’t have any component developed with the framework. false component.java.arguments Component server additional options - component.java.m2 Maven repository that the server uses to resolve components Defaults to the global Studio configuration component.java.coordinates A list of comma-separated GAV (groupId:artifactId:version) of components to register - component.java.registry A properties file with values matching component GAV (groupId:artifactId:version) registered at startup. Only use slashes (even on windows) in the path. - component.java.port Sets the port to use for the server random component.server.extensions A comma separated list of gav to locate the extensions. - components.server.beam.active Active, if set to true, Beam support (Experimental). It requires Beam SDK Java core dependencies to be available. false component.server.jul.forceConsole Adds a console handler to JUL to see logs in the console. This can be helpful in development because the formatting is clearer than the OSGi one in workspace/.metadata/.log. It uses the java.util.logging.SimpleFormatter.format property to define its format. By default, it is %1$tb %1$td, %1$tY %1$tl:%1$tM:%1$tS %1$Tp %2$s%n%4$s: %5$s%6$s%n, but for development purposes [%4$s] %5$s%6$s%n is simpler and more readable. false Here is an example of a common developer configuration/config.ini file: The developer mode is especially useful to iterate on your component development and to avoid closing and restarting Talend Studio every time you make a change to a component. It adds a Talend Component Kit button in the main toolbar: When clicking this button, all components developed with the Talend Component Kit framework are reloaded. The cache is invalidated and the components refreshed. You still need to add and remove the components to see the changes. To enable it, simply set the component.environment parameter to dev in the config.ini configuration file of the component server. Several methods allow you to debug custom components created with Talend Component Kit in Talend Studio. From your development tool, create a new Remote configuration, and copy the Command line arguments for running remote JVM field. For example, -agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=*:5005, where: the suspend parameter of the -agentlib argument specifies whether you want to suspend the debugged JVM until the debugger attaches to it. Possible values are n (no, default value) or y (yes). the address parameter of the -agentlib argument is the port used for the remote configuration. Make sure this port is available. Open Talend Studio. Create a new Job that uses the component you want to debug or open an existing one that already uses it. Go to the Run tab of the Job and select Use specific JVM arguments. Click New to add an argument. In the popup window, paste the arguments copied from the IDE. Enter the corresponding debug mode: To debug the runtime, run the Job and access the remote host configured in the IDE. To debug the Guess schema option, click the Guess schema action button of the component and access the remote host configured in the IDE. From your development tool, create a new Remote configuration, and copy the Command line arguments for running remote JVM field. For example, -agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=*:5005, where: suspend defines whether you need to access the defined configuration to run the remote JVM. Possible values are n (no, default value) or y (yes). address is the port used for the remote configuration. Make sure this port is available. Access the installation directory of your Talend Sutdio. Open the .ini file corresponding to your Operating System. For example, TOS_DI-win-x86_64.ini. Paste the arguments copied from the IDE in a new line of the file. Go to Talend Studio to use the component, and access the host host configured in the IDE. If you run multiple Studio instances automatically in parallel, you can run into some issues with the random port computation. For example on a CI platform. For that purpose, you can create the $HOME/.talend/locks/org.talend.sdk.component.studio-integration.lock file. Then, when a server starts, it acquires a lock on that file and prevents another server to get a port until it is started. It ensures that you can’t have two concurrent processes getting the same port allocated. However, it is highly unlikely to happen on a desktop. In that case, forcing a different value through component.java.port in your config.ini file is a better solution for local installations.
Since the 1.1.25 release, the dynamic column feature is supported in Studio with component-runtime components.
Dynamic column is available with Enterprise versions of Talend Studio only.
In Studio, we can define for each component a schema with associated metadata.
To access those informations in your component, you’ve to do a few things:
Using the @Structure annotation
API: @org.talend.sdk.component.api.configuration.ui.widget.Structure
According the specified field type, you will acess to
the column names list with List
This tutorial shows how to adapt the test configuration of the Zendesk search component that was done in this previous tutorial to make it work in a Continuous Integration environment.
In the test, the Zendesk credentials are used directly in the code to perform a first capture of the API response. Then, fake credentials are used in the simulation mode because the real API is not called anymore.
However, in some cases, you can require to continue calling the real API on a CI server or on a specific environment.
To do that, you can adapt the test to get the credentials depending on the execution mode (simulation/passthrough).
These instructions concern the CI server or on any environment that requires real credentials.
This tutorial uses:
A Maven server that supports password encryption as a credential provider. Encryption is optional but recommended.
The MavenDecrypterRule test rule provided by the framework. This rule lets you get credentials from Maven settings using a server ID.
To create encrypted server credentials for the Zendesk instance:
Create a master password using the command: mvn --encrypt-master-password
You can reuse Maven settings.xml server files, including the encrypted ones. org.talend.sdk.component.maven.MavenDecrypter allows yo to find a username/password from a server identifier: It is very useful to avoid storing secrets and to perform tests on real systems on a continuous integration platform. Even if you do not use Maven on the platform, you can generate the settings.xml and`settings-security.xml` files to use that feature. See maven.apache.org/guides/mini/guide-encryption.html for more details.
The HTTP API intends to expose most Talend Component Kit features over HTTP. It is a standalone Java HTTP server.
The WebSocket protocol is activated for the endpoints. Endpoints then use /websocket/v1 as base instead of /api/v1. See WebSocket for more details.
Browse the API description using interface.
To make sure that the migration can be enabled, you need to set the version the component was created with in the execution configuration that you send to the server (component version is in component the detail endpoint). To do that, use tcomp::component::version key.
Endpoints that are intended to disappear will be deprecated. A X-Talend-Warning header will be returned with a message as value.
You can connect yo any endpoint by:
Replacing /api with /websocket
Appending /
Some recommendations apply to the way component packages are organized: Make sure to create a package-info.java file with the component family/categories at the root of your component package: Create a package for the configuration. Create a package for the actions. Create a package for the component and one sub-package by type of component (input, output, processors, and so on). It is recommended to serialize your configuration in order to be able to pass it through other components. When building a new component, the first step is to identify the way it must be configured. The two main concepts are: The DataStore which is the way you can access the backend. The DataSet which is the way you interact with the backend. For example: Example description DataStore DataSet Accessing a relational database like MySQL JDBC driver, URL, username, password Query to execute, row mapper, and so on. Accessing a file system File pattern (or directory + file extension/prefix/…) File format, buffer size, and so on. It is common to have the dataset including the datastore, because both are required to work. However, it is recommended to replace this pattern by defining both dataset and datastore in a higher level configuration model. For example: Input and output components are particular because they can be linked to a set of actions. It is recommended to wire all the actions you can apply to ensure the consumers of your component can provide a rich experience to their users. The most common actions are the following ones: This action exposes a way to ensure the datastore/connection works. Configuration example: Action example: Until the studio integration is complete, it is recommended to limit processors to one input. Configuring processor components is simpler than configuring input and output components because it is specific for each component. For example, a mapper takes the mapping between the input and output models: It is recommended to provide as much information as possible to let the UI work with the data during its edition. Light validations are all the validations you can execute on the client side. They are listed in the UI hint section. Use light validations first before going with custom validations because they are more efficient. Custom validations enforce custom code to be executed, but are heavier to execute. Prefer using light validations when possible. Define an action with the parameters needed for the validation and link the option you want to validate to this action. For example, to validate a dataset for a JDBC driver: You can also define a Validable class and use it to validate a form by setting it on your whole configuration: The parameter binding of the validation method uses the same logic as the component configuration injection. Therefore, the @Option method specifies the prefix to use to reference a parameter. It is recommended to use @Option("value") until you know exactly why you don’t use it. This way, the consumer can match the configuration model and just prefix it with value. to send the instance to validate. Validations are triggers based on "events". If you mark part of a configuration as @Validable but this configuration is translated to a widget without any interaction, then no validation will happen. The rule of thumb is to mark only primitives and simple types (list of primitives) as @Validable. It can be handy and user-friendly to provide completion on some fields. For example, to define completion for available drivers: Each component must have its own icon: You can use talend.surge.sh/icons/ to find the icon you want to use. It is recommended to enforce the version of your component, event though it is not mandatory for the first version. If you break a configuration entry in a later version; make sure to: Upgrade the version. Support a migration of the configuration. Testing your components is critical. You can use unit and simple standalone JUnit tests, but it is also highly recommended to have Beam tests in order to make sure that your component works in Big Data.
Internationalization requires following several best practices: Storing messages using ResourceBundle properties file in your component module. The location of the properties is in the same package than the related components and is named Messages. For example, org.talend.demo.MyComponent uses org.talend.demo.Messages[locale].properties. Use the internationalization API for your own messages. The Internationalization API is the mechanism to use to internationalize your own messages in your own components. The principle of the API is to design messages as methods returning String values and get back a template using a ResourceBundle named Messages and located in the same package than the interface that defines these methods. To ensure your internationalization API is identified, you need to mark it with the @Internationalized annotation: The corresponding Messages.properties placed in the org/superbiz resource folder contains the following:
To develop new components, Talend Component Kit requires a build tool in which you will import the component project generated from the starter.
You will then be able to install and deploy it to Talend applications. A Talend Component Kit plugin is available for each of the supported build tools.
talend-component-maven-plugin helps you write components that match best practices and generate transparently metadata used by Talend Studio.
You can use it as follows:
This plugin is also an extension so you can declare it in your build/extensions block as:
Used as an extension, the goals detailed in this document will be set up.
The Talend Component Kit plugin integrates some specific goals within Maven build lifecycle. For example, to compile the project and prepare for deploying your component, run mvn clean install. Using this command, the following goals are executed:
The build is split into several phases. The different goals are executed in the order shown above. Talend Component Kit uses default goals from the Maven build lifecycle and adds additional goals to the building and packaging phases.
Goals added to the build by Talend Component Kit are detailed below. The default lifecycle is detailed in Maven documentation.
The Talend Component Kit plugin for Maven integrates several specific goals into Maven build lifecycle.
To run specific goals individually, run the following command from the root of the project, by adapting it with each goal name, parameters and values:
The first goal is a shortcut for the maven-dependency-plugin. It creates the TALEND-INF/dependencies.txt file with the compile and runtime dependencies, allowing the component to use it at runtime:
The scan-descriptor goal scans the current module and optionally other configured folders to precompute the list of interesting classes for the framework (components, services). It allows to save some bootstrap time when launching a job, which can be useful in some execution cases:
Configuration - excluding parameters used by default only:
Name
Description
User property
Default
output
Where to dump the scan result. Note: It is not supported to change that value in the runtime.
talend.scan.output
${project.build.outputDirectory}/TALEND-INF/scanning.properties
scannedDirectories
Explicit list of directories to scan.
talend.scan.scannedDirectories
If not set, defaults to ${project.build.outputDirectory}
scannedDependencies
Explicit list of dependencies to scan - set them in the groupId:artifactId format. The list is appended to the file to scan.
talend.scan.scannedDependencies
-
The svg2png goal scans a directory - default to target/classes/icons - to find .svg files and copy them in a PNG version size at 32x32px and named with the suffix _icon32.png to enable the studio to read it:
Configuration:
Name
Description
User property
Default
icons
Where to scan for the SVG icons to convert in PNG.
talend.icons.source
${project.build.outputDirectory}/icons
workarounds
By default the shape of the icon will be enforce in the RGB channels (in white) using the alpha as reference. This is useful for black/white images using alpha to shape the picture because Eclipse - Talend Studio - caches icons using RGB but not alpha channel, pictures not using alpha channel to draw their shape should disable that workaround.
talend.icons.workaround
true
if you use that plugin, ensure to set it before the validate mojo otherwise validation can miss some png files.
This goal helps you validate the common programming model of the component. To activate it, you can use following execution definition:
It is bound to the process-classes phase by default. When executed, it performs several validations that can be disabled by setting the corresponding flags to false in the
component-runtime-junit is a test library that allows you to validate simple logic based on the Talend Component Kit tooling.
To import it, add the following dependency to your project:
This dependency also provides mocked components that you can use with your own component to create tests.
The mocked components are provided under the test family:
emitter : a mock of an input component
collector : a mock of an output component
The collector is "per thread" by default. If you are executing a Beam (or concurrent) job, it will not work. To switch to a JVM wide storage, set the talend.component.junit.handler.state system property to static (default being thread). You can do it in a maven-surefire-plugin execution.
You can define a standard JUnit test and use the SimpleComponentRule rule:
The rule can also be defined as a @ClassRule to start it once per class and not per test as with @Rule.
To go further, you can add the ServiceInjectionRule rule, which allows to inject all the component family services into the test class by marking test class fields with @Service:
The JUnit 5 integration is very similar to JUnit 4, except that it uses the JUnit 5 extension mechanism.
The entry point is the @WithComponents annotation that you add to your test class, and which takes the component package you want to test. You can use @Injected to inject an instance of ComponentsHandler - which exposes the same utilities than the JUnit 4 rule - in a test class field :
If you use JUnit 5 for the first time, keep in mind that the imports changed and that you need to use org.junit.jupiter.api.Test instead of org.junit.Test. Some IDE versions and surefire versions can also require you to install either a plugin or a specific configuration.
As for JUnit 4, you can go further by injecting test class fields marked with @Service, but there is no additional extension to specify in this case:
Streaming components have the issue to not stop by design. The Job DSL exposes two properties to help with that issue:
streaming.maxRecords: enables to request a maximum number of records
streaming.maxDurationMs: enables to request a maximum duration for the execution of the input
You can set them as properties on the job:
Using the test://collector component as shown in the previous sample stores all records emitted by the chain (typically your source) in memory. You can then access them using theSimpleComponentRule.getCollectedData(type).
Note that this method filters by type. If you don’t need any specific type, you can use Object.class.
The input mocking is symmetric to the output. In this case, you provide the data you want to inject:
The component configuration is a POJO (using @Option on fields) and the runtime configuration (ExecutionChainBuilder) uses a Map
The following tutorials are designed to help you understand the main principles of component development using Talend Component Kit. With this set of tutorials, get your hands on project creation using the Component Kit Starter and implement the logic of different types of components. Creating your first component Generating a project from the starter Creating a Hazelcast input component Creating a Hazelcast output component Creating a Zendesk REST API connector Handling component version migration With this set of tutorials, learn the different approaches to test the components created in the previous tutorials. Testing a Zendesk REST API connector Testing a Hazelcast component Testing in a continuous integration environment
In some cases you can need to add some actions that are not related to the runtime. For example, enabling users of the plugin/library to test if a connection works properly. To do so, you need to define an @Action, which is a method with a name (representing the event name), in a class decorated with @Service: Services are singleton. If you need some thread safety, make sure that they match that requirement. Services should not store any status either because they can be serialized at any time. Status are held by the component. Services can be used in components as well (matched by type). They allow to reuse some shared logic, like a client. Here is a sample with a service used to access files: The service is automatically passed to the constructor. It can be used as a bean. In that case, it is only necessary to call the service method. Some common actions need a clear contract so they are defined as API first-class citizen. For example, this is the case for wizards or health checks. Here is the list of the available actions: Mark an action works for closing runtime connection, returning a close helper object which do real close action. The functionality is for the Studio only, studio will use the close object to close connection for existed connection, and no effect for cloud platform. Type: close_connection API: @org.talend.sdk.component.api.service.connection.CloseConnection Returned type: org.talend.sdk.component.api.service.connection.CloseConnectionObject Sample: Mark an action works for creating runtime connection, returning a runtime connection object like jdbc connection if database family. Its parameter MUST be a datastore. Datastore is configuration type annotated with @DataStore. The functionality is for the Studio only, studio will use the runtime connection object when use existed connection, and no effect for cloud platform. Type: create_connection API: @org.talend.sdk.component.api.service.connection.CreateConnection This class marks an action that explore a connection to retrieve potential datasets. Type: discoverdataset API: @org.talend.sdk.component.api.service.discovery.DiscoverDataset Returned type: org.talend.sdk.component.api.service.discovery.DiscoverDatasetResult Sample: Mark a method as returning a list of dynamic dependencies with GAV formatting. Type: dynamic_dependencies API: @org.talend.sdk.component.api.service.dependency.DynamicDependencies Returned type: java.util.List Sample: Mark a method as being useful to fill potential values of a string option for a property denoted by its value. You can link a field as being completable using @Proposable(value). The resolution of the completion action is then done through the component family and value of the action. The callback doesn’t take any parameter. Type: dynamic_values API: @org.talend.sdk.component.api.service.completion.DynamicValues Returned type: org.talend.sdk.component.api.service.completion.Values Sample: This class marks an action doing a connection test Type: healthcheck API: @org.talend.sdk.component.api.service.healthcheck.HealthCheck Returned type: org.talend.sdk.component.api.service.healthcheck.HealthCheckStatus Sample: Mark an action as returning a discovered schema. Its parameter MUST be a dataset. Dataset is configuration type annotated with @DataSet. If component has multiple datasets, then dataset used as action parameter should have the same identifier as this @DiscoverSchema. Type: schema API: @org.talend.sdk.component.api.service.schema.DiscoverSchema Returned type: org.talend.sdk.component.api.record.Schema Sample: Mark a method as returning a Schema resulting from a connector configuration and some other parameters.Parameters can be an incoming schema and/or an outgoing branch.`value' name should match the connector’s name. Type: schema_extended API: @org.talend.sdk.component.api.service.schema.DiscoverSchemaExtended Returned type: org.talend.sdk.component.api.record.Schema Sample: Mark a method as being useful to fill potential values of a string option. You can link a field as being completable using @Suggestable(value). The resolution of the completion action is then done when the user requests it (generally by clicking on a button or entering the field depending the environment). Type: suggestions API: @org.talend.sdk.component.api.service.completion.Suggestions Returned type: org.talend.sdk.component.api.service.completion.SuggestionValues Sample: This class marks an action returning a new instance replacing part of a form/configuration. Type: update API: @org.talend.sdk.component.api.service.update.Update Extension point for custom UI integrations and custom actions. Type: user API: @org.talend.sdk.component.api.service.Action Mark a method as being used to validate a configuration. this is a server validation so only use it if you can’t use other client side validation to implement it. Type: validation API: @org.talend.sdk.component.api.service.asyncvalidation.AsyncValidation Returned type: org.talend.sdk.component.api.service.asyncvalidation.ValidationResult Sample: These actions are provided - or not - by the application the UI runs within. always ensure you don’t require this action in your component. Mark the decorated field as supporting suggestions, i.e. dynamically get a list of valid values the user can use. It is however different from @Suggestable by looking up the implementation in the current application and not the services. Finally, it is important to note that it can do nothing in some environments too and that there is no guarantee the specified action is supported. API: @org.talend.sdk.component.api.configuration.action.BuiltInSuggestable Internationalization is supported through the injection of the $lang parameter, which allows you to get the correct locale to use with an @Internationalized service: You can combine the $lang option with the @Internationalized and @Language parameters.
In order to use Talend Component Kit, you need the following tools installed on your machine: Java JDK 1.8.x. You can download it from Oracle website. Talend Open Studio to integrate your components. A Java Integrated Development Environment such as Eclipse or IntelliJ. IntelliJ is recommended as a Talend Component Kit plugin is available. Optional: If you use IntelliJ, you can install the Talend Component Kit plugin for IntelliJ. Optional: A build tool: Apache Maven 3.5.4 is recommended to develop a component or the project itself. You can download it from Apache Maven website. You can also use Gradle, but at the moment certain features are not supported, such as validations. It is optional to install a build tool independently since Maven and Gradle wrappers are already available with Talend Component Kit.
Checkpointing is a feature in the Talend Component Kit (TCK) that enables an input connector to resume processing from the last recorded checkpoint. This ensures fault tolerance and better handling of large data streams by avoiding reprocessing from the beginning in case of failures.
This feature targets mainly upcoming tck integration in Qlik Data Integration (QDI) platforms. (Studio and Talend Cloud are not targeted).
The feature is disabled by default, to use the checkpoint, you need to add a system property talend.checkpoint.enable in the runtime jvm like this:
Checkpointing in TCK is implemented using specific annotations and an interface that defines the required methods. The checkpointing mechanism allows the runtime to save and restore processing states efficiently.
@CheckpointData: This annotation marks a method that returns a checkpoint object annotated with @Checkpoint.
@CheckpointAvailable: This annotation marks a method that indicates when a new checkpoint is available.
@Checkpoint: This annotation is used to mark a class as a checkpointing configuration and state class. This configuration let user define how checkpoints should be built by the connector, and what are data that are set in checkpoint. Those are instances of that class that are given to the connector to configure it to restart at the expected state.
To support checkpointing, the input component used in the lifecycle implement the following interface (this is an internal implementation, connectors developers don’t have to implement it):
The start() method is called with a callback function that retrieves and serializes checkpoint instances. The getCheckpoint() method returns those checkpoint instances, and isCheckpointReady() checks if a new checkpoint is available.
Those methods are frontend methods for connectors' methods annotated with @CheckpointAvailable, and @Checkpoint.
At runtime, checkpointing can be used in two ways:
In this mode, the runtime directly calls the methods of the input connector to manage checkpointing. It is responsible for:
Determining when to create a checkpoint.
Checking if a checkpoint is available using isCheckpointReady().
Retrieving and storing the checkpoint using getCheckpoint().
Simple example of explicit checkpointing usage:
In this mode, checkpointing is handled automatically during the lifecycle:
The start() method is called with a callback function that retrieves and serializes the checkpoint object.
While reading records (next() method), the connector checks whether a checkpoint can be provided.
If necessary, the checkpoint is generated by calling getCheckpoint(), which internally calls the method annotated with @CheckpointData.
As state previously, checkpoints are configured via the @Checkpoint annotated configuration class. The @Checkpoint annotation can be used to specify the method type used for checkpointing and the checkpointing frequency. The checkpointing frequency can be set to options such as RECORD or TIME. For example, selecting the RECORD frequency saves the checkpoint after processing a certain number of records, while selecting the TIME frequency generates checkpoints at specified time intervals.
When the component is restarted, the runtime calls the start() method. The connector receives its configuration which is merged with the checkpoint object. It can then resume processing from the last saved state from the configuration.
When implementing checkpointing, it is recommended to use a separate configuration class for checkpointing. This class should be nested within the main configuration class and annotated with @Checkpoint. This ensures that the checkpointing configuration is separate from the main configuration and can be easily managed by the runtime.
Sample configuration class with checkpointing annotations:
Calling the getCheckpoint() returns CheckpointState class, which is a simple POJO class that holds the checkpoint data and version. This class has to be serializable to allow the runtime to save and restore the checkpoint object. For that, it provides a helper method toJson() to serialize the checkpoint state object.
Here’s a simple example of a CheckpointState class serialized to JSON:
Notice the following which are important (automatically done using toJson()):
The checkpointing configuration class is defined as a nested class within the component configuration class. The runtime has to provide the checkpointing configuration to the component when it is started.
Important points to remember when providing the configuration to the component, you don’t need to respect the internal configuration path of checkpoint configuration class in your connector. The runtime will automatically map the configuration to the checkpoint configuration class when you prefix your checkpoint state with $checkpoint.
It’s quite easy to translate configuration and checkpoints in json format to a Map
singer-java module provide a Java API to write a custom singer. To import it, add the following dependency: Then you have access to the Singer class and its companion which provides the primitives to output properly the data: To build schema, keys, bookmarks, json and state which are all either JsonObject or JsonArray you can rely on JsonBuilderFactory which can be instantiated with this snippet: component-kitap is the name of the integration between singer-java and Talend Component Kit. It enables to run native Talend Component Kit components through a tap. The module relies on a proper setup of the component and classpath: Classpath is well setup - composed of component-kitap with a default SLF4J binding configured to log only errors on stderr. For convenience, you can use the all in one bundle provided by the module: org.talend.sdk.component:component-kitapp:${kit.version}:fatjar. Component is "deployed" - i.e. its maven repository is set provisionned with its dependencies. If you downloaded a component as a .car then you can run the car to do it. You can enforce the maven location through the system property talend.component.manager.m2.repository. Regarding SLF4J, the fatjar uses slf4j-standard of the framework which enables to set the logged level to error through a system property: -Dorg.talend.sdk.component.slf4j.StdLogger.level=err. To automatically register a component plugin/family you must add to the classpath a TALEND-INF/plugins.properties: The file only need to contain the registration of the plugin jar: Therefore the launch command can look like: Alternatively you can use org.talend.sdk.component.singer.kitap.Carpates main to launch the application, it differs from Kitap in the sense it takes a .car as option and avoids to pre-build the m2 repository: Here is an example with a real component: The config.json must respect this format: in some environment, such a JSON is not desirable, it is possible to put component_config attribute as a string containing the full json (escaped indeed) too.
Components are designed to manipulate data (access, read, create). Talend Component Kit can handle several types of data, described in this document. By design, the framework must run in DI (plain standalone Java program) and in Beam pipelines. It is out of scope of the framework to handle the way the runtime serializes - if needed - the data. For that reason, it is critical not to import serialization constraints to the stack. As an example, this is one of the reasons why Record or JsonObject were preferred to Avro IndexedRecord. Any serialization concern should either be hidden in the framework runtime (outside of the component developer scope) or in the runtime integration with the framework (for example, Beam integration). Record is the default format. It offers many possibilities and can evolve depending on the Talend platform needs. Its structure is data-driven and exposes a schema that allows to browse it. Projects generated from the Talend Component Kit Starter are by default designed to handle this format of data. Record is a Java interface but never implement it yourself to ensure compatibility with the different Talend products. Follow the guidelines below. You can build records using the newRecordBuilder method of the RecordBuilderFactory (see here). For example: In the example above, the schema is dynamically computed from the data. You can also do it using a pre-built schema, as follows: The example above uses a schema that was pre-built using factory.newSchemaBuilder(Schema.Type.RECORD). When using a pre-built schema, the entries passed to the record builder are validated. It means that if you pass a null value null or an entry type that does not match the provided schema, the record creation fails. It also fails if you try to add an entry which does not exist or if you did not set a not nullable entry. Using a dynamic schema can be useful on the backend but can lead users to more issues when creating a pipeline to process the data. Using a pre-built schema is more reliable for end-users. You can access and read data by relying on the getSchema method, which provides you with the available entries (columns) of a record. The Entry exposes the type of its value, which lets you access the value through the corresponding method. For example, the Schema.Type.STRING type implies using the getString method of the record. For example: The Record format supports the following data types: String Boolean Int Long Float Double DateTime Array Bytes Record A map can always be modelized as a list (array of records with key and value entries). For example: For example, you can use the API to provide the schema. The following method needs to be implemented in a service. Manually constructing the schema without any data: Returning the schema from an already built record: MyDataset is the class that defines the dataset. Learn more about datasets and datastores in this document. Entry names for Record and JsonObject types must comply with the following rules: The name must start with a letter or with _. If not, the invalid characters are ignored until the first valid character. Following characters of the name must be a letter, a number, or . If not, the invalid character is replaced with . For example: 1foo becomes foo. f@o becomes f_o. 1234f5@o becomes ___f5_o. foo123 stays foo123. Each array uses only one schema for all of its elements. If an array contains several elements, they must be of the same data type. For example, the following array is not correct as it contains a string and an object: The runtime also supports JsonObject as input and output component type. You can rely on the JSON services (Jsonb, JsonBuilderFactory) to create new instances. This format is close to the Record format, except that it does not natively support the Datetime type and has a unique Number type to represent Int, Long, Float and Double types. It also does not provide entry metadata like nullable or comment, for example. It also inherits the Record format limitations. The runtime also accepts any POJO as input and output component type. In this case, it uses JSON-B to treat it as a JsonObject.
JUnit (4 or 5) already provides ways to parameterize tests and execute the same "test logic" against several sets of data. However, it is not very convenient for testing multiple environments.
For example, with Beam, you can test your code against multiple runners. But it requires resolving conflicts between runner dependencies, setting the correct classloaders, and so on.
To simplify such cases, the framework provides you a multi-environment support for your tests, through the JUnit module, which works with both JUnit 4 and JUnit 5.
The MultiEnvironmentsRunner executes the tests for each defined environments. With the example above, it means that it runs test1 for Env1 and Env2.
By default, the JUnit4 runner is used to execute the tests in one environment, but you can use @DelegateRunWith to use another runner.
The multi-environment configuration with JUnit 5 is similar to JUnit 4:
The main differences are that no runner is used because they do not exist in JUnit 5, and that you need to replace @Test by @EnvironmentalTest.
With JUnit5, tests are executed one after another for all environments, while tests are ran sequentially in each environments with JUnit 4. For example, this means that @BeforeAll and @AfterAll are executed once for all runners.
The provided environment sets the contextual classloader in order to load the related runner of Apache Beam.
Package: org.talend.sdk.component.junit.environment.builtin.beam
the configuration is read from system properties, environment variables, ….
_class: ContextualEnvironment.
_class: DirectRunnerEnvironment.
_class: FlinkRunnerEnvironment.
_class: SparkRunnerEnvironment.
If the environment extends BaseEnvironmentProvider and therefore defines an environment name - which is the case of the default ones - you can use EnvironmentConfiguration to customize the system properties used for that environment:
If you set the
The component configuration is defined in the
The framework provides built-in services that you can inject by type in components and actions.
Type
Description
org.talend.sdk.component.api.service.cache.LocalCache
Provides a small abstraction to cache data that does not need to be recomputed very often. Commonly used by actions for UI interactions.
org.talend.sdk.component.api.service.dependency.Resolver
Allows to resolve a dependency from its Maven coordinates. It can either try to resolve a local file or (better) creates for you a preinitialized classloader.
javax.json.bind.Jsonb
A JSON-B instance. If your model is static and you don’t want to handle the serialization manually using JSON-P, you can inject that instance.
javax.json.spi.JsonProvider
A JSON-P instance. Prefer other JSON-P instances if you don’t exactly know why you use this one.
javax.json.JsonBuilderFactory
A JSON-P instance. It is recommended to use this one instead of a custom one to optimize memory usage and speed.
javax.json.JsonWriterFactory
A JSON-P instance. It is recommended to use this one instead of a custom one to optimize memory usage and speed.
javax.json.JsonReaderFactory
A JSON-P instance. It is recommended to use this one instead of a custom one to optimize memory usage and speed.
javax.json.stream.JsonParserFactory
A JSON-P instance. It is recommended to use this one instead of a custom one to optimize memory usage and speed.
javax.json.stream.JsonGeneratorFactory
A JSON-P instance. It is recommended to use this one instead of a custom one to optimize memory usage and speed.
org.talend.sdk.component.api.service.dependency.Resolver
Allows to resolve files from Maven coordinates (like dependencies.txt for component). Note that it assumes that the files are available in the component Maven repository.
org.talend.sdk.component.api.service.injector.Injector
Utility to inject services in fields marked with @Service.
org.talend.sdk.component.api.service.factory.ObjectFactory
Allows to instantiate an object from its class name and properties.
org.talend.sdk.component.api.service.record.RecordBuilderFactory
Allows to instantiate a record.
org.talend.sdk.component.api.service.record.RecordPointerFactory
Allows to instantiate a RecordPointer which enables to extract a data from a Record based on jsonpointer specification.
org.talend.sdk.component.api.service.record.RecordService
Some utilities to create records from another one. It is typically what is used when you want to add an entry in a record and passthrough the other ones. It also provides a nice RecordVisitor API for advanced cases.
org.talend.sdk.component.api.service.configuration.LocalConfiguration
Represents the local configuration that can be used during the design.
It is not recommended to use it for the runtime because the local configuration is usually different and the instances are distinct.
You can also use the local cache as an interceptor with @Cached
Every interface that extends HttpClient and that contains methods annotated with @Request
Lets you define an HTTP client in a declarative manner using an annotated interface.
See the Using HttpClient for more details.
All these injected services are serializable, which is important for big data environments. If you create the instances yourself, you cannot benefit from these features, nor from the memory optimization done by the runtime. Prefer reusing the framework instances over custom ones.
The local configuration uses system properties and the environment (replacing dots per underscores) to look up the values. You can also put a TALEND-INF/local-configuration.properties file with default values. This allows to use the local_configuration:
Talend Component Kit is a Java framework designed to simplify the development of components at two levels: The Runtime, that injects the specific component code into a job or pipeline. The framework helps unifying as much as possible the code required to run in Data Integration (DI) and BEAM environments. The Graphical interface. The framework helps unifying the code required to render the component in a browser or in the Eclipse-based Talend Studio (SWT). Most part of the development happens as a Maven or Gradle project and requires a dedicated tool such as IntelliJ. The Component Kit is made of: A Starter, that is a graphical interface allowing you to define the skeleton of your development project. APIs to implement components UI and runtime. Development tools: Maven and Gradle wrappers, validation rules, packaging, Web preview, etc. A testing kit based on JUnit 4 and 5. By using this tooling in a development environment, you can start creating components as described below. Developing new components using the Component Kit framework includes: Creating a project using the starter or the Talend IntelliJ plugin. This step allows to build the skeleton of the project. It consists in: Defining the general configuration model for each component in your project. Generating and downloading the project archive from the starter. Compiling the project. Importing the compiled project in your IDE. This step is not required if you have generated the project using the IntelliJ plugin. Implementing the components, including: Registering the components by specifying their metadata: family, categories, version, icon, type and name. Defining the layout and configurable part of the components. Defining the execution logic of the components, also called runtime. Testing the components. Deploying the components to Talend Studio or Cloud applications. Optionally, you can use services. Services are predefined or user-defined configurations that can be reused in several components. There are four types of components, each type coming with its specificities, especially on the runtime side. Input components: Retrieve the data to process from a defined source. An input component is made of: The execution logic of the component, represented by a Mapper or an Emitter class. The source logic of the component, represented by a Source class. The layout of the component and the configuration that the end-user will need to provide when using the component, defined by a Configuration class. All input components must have a dataset specified in their configuration, and every dataset must use a datastore. Processors: Process and transform the data. A processor is made of: The execution logic of the component, describing how to process each records or batches of records it receives. It also describes how to pass records to its output connections. This logic is defined in a Processor class. The layout of the component and the configuration that the end-user will need to provide when using the component, defined by a Configuration class. Output components: Send the processed data to a defined destination. An output component is made of: The execution logic of the component, describing how to process each records or batches of records it receives. This logic is defined in an Output class. Unlike processors, output components are the last components of the execution and return no data. The layout of the component and the configuration that the end-user will need to provide when using the component, defined by a Configuration class. All input components must have a dataset specified in their configuration, and every dataset must use a datastore. Standalone components: Make a call to the service or run a query on the database. A standalone component is made of: The execution logic of the component, represented by a DriverRunner class. The layout of the component and the configuration that the end-user will need to provide when using the component, defined by a Configuration class. All input components must have a datastore or dataset specified in their configuration, and every dataset must use a datastore. The following example shows the different classes of an input components in a multi-component development project: Setup your development environment Generate your first project and develop your first component
Talend Component Kit is a toolkit based on Java and designed to simplify the development of components at two levels: Runtime: Runtime is about injecting the specific component code into a job or pipeline. The framework helps unify as much as possible the code required to run in Data Integration (DI) and BEAM environments. Graphical interface: The framework helps unify the code required to be able to render the component in a browser (web) or in the Eclipse-based Studio (SWT). The Talend Component Kit framework is made of several tools designed to help you during the component development process. It allows to develop components that fit in both Java web UIs. Starter: Generate the skeleton of your development project using a user-friendly interface. The Talend Component Kit Starter is available as a web tool or as a plugin for the IntelliJ IDE. Component API: Check all classes available to implement components. Build tools: The framework comes with Maven and Gradle wrappers, which allow to always use the version of Maven or Gradle that is right for your component development environment and version. Testing tools: Test components before integrating them into Talend Studio or Cloud applications. Testing tools include the Talend Component Kit Web Tester, which allows to check the web UI of your components on your local machine. You can find more details about the framework design in this document. The Talend Component Kit project is available on GitHub in the following repository
Testing code that consumes REST APIs can sometimes present many constraints: API rate limit, authentication token and password sharing, API availability, sandbox expiration, API costs, and so on. As a developer, it becomes critical to avoid those constraints and to be able to easily mock the API response. The component framework provides an API simulation tool that makes it easy to write unit tests. This tutorial shows how to use this tool in unit tests. As a starting point, the tutorial uses the component that consumes Zendesk Search API and that was created in a previous tutorial. The goal is to add unit tests for it. For this tutorial, four tickets that have the open status have been added to the Zendesk test instance used in the tests. To learn more about the testing methodology used in this tutorial, refer to Component JUnit testing. Create a unit test that performs a real HTTP request to the Zendesk Search API instance. You can learn how to create a simple unit test in this tutorial. the authentication configuration using Zendesk instance URL and credentials. the search query configuration to get all the open ticket, ordered by creation date and sorted in descending order. The test is now complete and working. It performs a real HTTP request to the Zendesk instance. As an alternative, you can use mock results to avoid performing HTTP requests every time on the development environment. The real HTTP requests would, for example, only be performed on an integration environment. To transform the unit test into a mocked test that uses a mocked response of the Zendesk Search API: Add the two following JUnit rules provided by the component framework. JUnit4HttpApi: This rule starts a simulation server that acts as a proxy and catches all the HTTP requests performed in the tests. This simulation server has two modes : capture : This mode forwards the captured HTTP request to the real server and captures the response. simulation : this mode returns a mocked response from the responses already captured. This rule needs to be added as a class rule. JUnit4HttpApi: This rule has a reference to the first rule. Its role is to configure the simulation server for every unit test. It passes the context of the running test to the simulation server. This rule needs to be added as a simple (method) rule. Example to run in a simulation mode: Make the test run in capture mode to catch the real API responses that can be used later in the simulated mode. To do that, set a new talend.junit.http.capture environment variable to true. This tells the simulation server to run in a capture mode. The captured response is saved in the resources/talend.testing.http package in a JSON format, then reused to perform the API simulation.
The Talend Component Kit IntelliJ plugin is a plugin for the IntelliJ Java IDE. It adds support for the Talend Component Kit project creation. Main features: Project generation support. Internationalization completion for component configuration. In the Intellij IDEA: Go to File > Settings… On the left panel, select Plugins. Access the Marketplace tab. Enter Talend in the search field and Select Talend Component Kit. Select Install. Click the Restart IDE button. Confirm the IDEA restart to complete the installation. The plugin is now installed on your IntelliJ IDEA. You can start using it. The plugin offers auto-completion for the configuration internationalization. The Talend component configuration lets you setup translatable and user-friendly labels for your configuration using a property file. Auto-completion in possible for the configuration keys and default values in the property file. For example, you can internationalize a simple configuration class for a basic authentication that you use in your component: This configuration class contains three properties which you can attach a user-friendly label to. For example, you can define a label like My server URL for the url option: Locate or create a Messages.properties file in the project resources and add the label to that file. The plugin automatically detects your configuration and provides you with key completion in the property file. Press Ctrl+Space to see the key suggestions.