Search results for principle

Getting started with Talend Component Kit  Learn the basics about Talend Component Kit framework and get ready to create new components   quickstart overview principle description

Talend Component Kit is a Java framework designed to simplify the development of components at two levels: The Runtime, that injects the specific component code into a job or pipeline. The framework helps unifying as much as possible the code required to run in Data Integration (DI) and BEAM environments. The Graphical interface. The framework helps unifying the code required to render the component in a browser or in the Eclipse-based Talend Studio (SWT). Most part of the development happens as a Maven or Gradle project and requires a dedicated tool such as IntelliJ. The Component Kit is made of: A Starter, that is a graphical interface allowing you to define the skeleton of your development project. APIs to implement components UI and runtime. Development tools: Maven and Gradle wrappers, validation rules, packaging, Web preview, etc. A testing kit based on JUnit 4 and 5. By using this tooling in a development environment, you can start creating components as described below. Developing new components using the Component Kit framework includes: Creating a project using the starter or the Talend IntelliJ plugin. This step allows to build the skeleton of the project. It consists in: Defining the general configuration model for each component in your project. Generating and downloading the project archive from the starter. Compiling the project. Importing the compiled project in your IDE. This step is not required if you have generated the project using the IntelliJ plugin. Implementing the components, including: Registering the components by specifying their metadata: family, categories, version, icon, type and name. Defining the layout and configurable part of the components. Defining the execution logic of the components, also called runtime. Testing the components. Deploying the components to Talend Studio or Cloud applications. Optionally, you can use services. Services are predefined or user-defined configurations that can be reused in several components. There are four types of components, each type coming with its specificities, especially on the runtime side. Input components: Retrieve the data to process from a defined source. An input component is made of: The execution logic of the component, represented by a Mapper or an Emitter class. The source logic of the component, represented by a Source class. The layout of the component and the configuration that the end-user will need to provide when using the component, defined by a Configuration class. All input components must have a dataset specified in their configuration, and every dataset must use a datastore. Processors: Process and transform the data. A processor is made of: The execution logic of the component, describing how to process each records or batches of records it receives. It also describes how to pass records to its output connections. This logic is defined in a Processor class. The layout of the component and the configuration that the end-user will need to provide when using the component, defined by a Configuration class. Output components: Send the processed data to a defined destination. An output component is made of: The execution logic of the component, describing how to process each records or batches of records it receives. This logic is defined in an Output class. Unlike processors, output components are the last components of the execution and return no data. The layout of the component and the configuration that the end-user will need to provide when using the component, defined by a Configuration class. All input components must have a dataset specified in their configuration, and every dataset must use a datastore. Standalone components: Make a call to the service or run a query on the database. A standalone component is made of: The execution logic of the component, represented by a DriverRunner class. The layout of the component and the configuration that the end-user will need to provide when using the component, defined by a Configuration class. All input components must have a datastore or dataset specified in their configuration, and every dataset must use a datastore. The following example shows the different classes of an input components in a multi-component development project: Setup your development environment Generate your first project and develop your first component

From Javajet to Talend Component Kit  The Javajet framework is being replaced by the new Talend Component Kit. Learn the main differences and the new approach introduced with this framework.   javajet studio studio-integration learning getting started principles

From the version 7.0 of Talend Studio, Talend Component Kit becomes the recommended framework to use to develop components. This framework is being introduced to ensure that newly developed components can be deployed and executed both in on-premise/local and cloud/big data environments. From that new approach comes the need to provide a complete yet unique and compatible way of developing components. With the Component Kit, custom components are entirely implemented in Java. To help you get started with a new custom component development project, a Starter is available. Using it, you will be able to generate the skeleton of your project. By importing this skeleton in a development tool, you can then implement the components layout and execution logic in Java. With the previous Javajet framework, metadata, widgets and configurable parts of a custom component were specified in XML. With the Component Kit, they are now defined in the Configuration (for example, LoggerProcessorConfiguration) Java class of your development project. Note that most of this configuration is transparent if you specified the Configuration Model of your components right before generating the project from the Starter. Any undocumented feature or option is considered not supported by the Component Kit framework. You can find examples of output in Studio or Cloud environments in the Gallery. Javajet Component Kit Javajet Component Kit Javajet Component Kit Javajet Component Kit Javajet Component Kit Javajet Component Kit or Component Kit Javajet Component Kit Javajet Component Kit Javajet Component Kit Javajet Component Kit Javajet Component Kit Javajet Component Kit Javajet Component Kit Javajet Component Kit Javajet Component Kit Return variables availability (1.51+) deprecates After Variables. Javajet AVAILABILITY can be : AFTER : set after component finished. FLOW : changed on row level. Component Kit Return variables can be nested as below: Javajet Component Kit or Previously, the execution of a custom component was described through several Javajet files: _begin.javajet, containing the code required to initialize the component. _main.javajet, containing the code required to process each line of the incoming data. _end.javajet, containing the code required to end the processing and go to the following step of the execution. With the Component Kit, the entire execution flow of a component is described through its main Java class (for example, LoggerProcessor) and through services for reusable parts. Each type of component has its own execution logic. The same basic logic is applied to all components of the same type, and is then extended to implement each component specificities. The project generated from the starter already contains the basic logic for each component. Talend Component Kit framework relies on several primitive components. All components can use @PostConstruct and @PreDestroy annotations to initialize or release some underlying resource at the beginning and the end of a processing. In distributed environments, class constructor are called on cluster manager nodes. Methods annotated with @PostConstruct and @PreDestroy are called on worker nodes. Thus, partition plan computation and pipeline tasks are performed on different nodes. All the methods managed by the framework must be public. Private methods are ignored. The framework is designed to be as declarative as possible but also to stay extensible by not using fixed interfaces or method signatures. This allows to incrementally add new features of the underlying implementations. To ensure that the Cloud-compatible approach of the Component Kit framework is respected, some changes were introduced on the implementation side, including: The File mode is no longer supported. You can still work with URIs and remote storage systems to use files. The file collection must be handled at the component implementation level. The input and output connections between two components can only be of the Flow or Reject types. Other types of connections are not supported. Every Output component must have a corresponding Input component and use a dataset. All datasets must use a datastore. To get started with the Component Kit framework, you can go through the following documents: Learn the basics about Talend Component Kit Create and deploy your first Component Kit component Learn about the Starter Start implementing components Integrate a component to Talend Studio Check some examples of components built with Talend Component Kit

Tutorials  Guided implementation examples to get your hands on Talend Component Kit   tutorial example implement test dev testing

The following tutorials are designed to help you understand the main principles of component development using Talend Component Kit. With this set of tutorials, get your hands on project creation using the Component Kit Starter and implement the logic of different types of components. Creating your first component Generating a project from the starter Creating a Hazelcast input component Creating a Hazelcast output component Creating a Zendesk REST API connector Handling component version migration With this set of tutorials, learn the different approaches to test the components created in the previous tutorials. Testing a Zendesk REST API connector Testing a Hazelcast component Testing in a continuous integration environment

Internationalizing services  How to internationalize a service using Talend Component Kit   service component-manager internationalization i18n language lang locale

Internationalization requires following several best practices: Storing messages using ResourceBundle properties file in your component module. The location of the properties is in the same package than the related components and is named Messages. For example, org.talend.demo.MyComponent uses org.talend.demo.Messages[locale].properties. Use the internationalization API for your own messages. The Internationalization API is the mechanism to use to internationalize your own messages in your own components. The principle of the API is to design messages as methods returning String values and get back a template using a ResourceBundle named Messages and located in the same package than the interface that defines these methods. To ensure your internationalization API is identified, you need to mark it with the @Internationalized annotation: The corresponding Messages.properties placed in the org/superbiz resource folder contains the following: