Search results for json
The framework provides built-in services that you can inject by type in components and actions.
Type
Description
org.talend.sdk.component.api.service.cache.LocalCache
Provides a small abstraction to cache data that does not need to be recomputed very often. Commonly used by actions for UI interactions.
org.talend.sdk.component.api.service.dependency.Resolver
Allows to resolve a dependency from its Maven coordinates. It can either try to resolve a local file or (better) creates for you a preinitialized classloader.
javax.json.bind.jsonb
A json-B instance. If your model is static and you don’t want to handle the serialization manually using json-P, you can inject that instance.
javax.json.spi.jsonProvider
A json-P instance. Prefer other json-P instances if you don’t exactly know why you use this one.
javax.json.jsonBuilderFactory
A json-P instance. It is recommended to use this one instead of a custom one to optimize memory usage and speed.
javax.json.jsonWriterFactory
A json-P instance. It is recommended to use this one instead of a custom one to optimize memory usage and speed.
javax.json.jsonReaderFactory
A json-P instance. It is recommended to use this one instead of a custom one to optimize memory usage and speed.
javax.json.stream.jsonParserFactory
A json-P instance. It is recommended to use this one instead of a custom one to optimize memory usage and speed.
javax.json.stream.jsonGeneratorFactory
A json-P instance. It is recommended to use this one instead of a custom one to optimize memory usage and speed.
org.talend.sdk.component.api.service.dependency.Resolver
Allows to resolve files from Maven coordinates (like dependencies.txt for component). Note that it assumes that the files are available in the component Maven repository.
org.talend.sdk.component.api.service.injector.Injector
Utility to inject services in fields marked with @Service.
org.talend.sdk.component.api.service.factory.ObjectFactory
Allows to instantiate an object from its class name and properties.
org.talend.sdk.component.api.service.record.RecordBuilderFactory
Allows to instantiate a record.
org.talend.sdk.component.api.service.record.RecordPointerFactory
Allows to instantiate a RecordPointer which enables to extract a data from a Record based on jsonpointer specification.
org.talend.sdk.component.api.service.record.RecordService
Some utilities to create records from another one. It is typically what is used when you want to add an entry in a record and passthrough the other ones. It also provides a nice RecordVisitor API for advanced cases.
org.talend.sdk.component.api.service.configuration.LocalConfiguration
Represents the local configuration that can be used during the design.
It is not recommended to use it for the runtime because the local configuration is usually different and the instances are distinct.
You can also use the local cache as an interceptor with @Cached
Every interface that extends HttpClient and that contains methods annotated with @Request
Lets you define an HTTP client in a declarative manner using an annotated interface.
See the Using HttpClient for more details.
All these injected services are serializable, which is important for big data environments. If you create the instances yourself, you cannot benefit from these features, nor from the memory optimization done by the runtime. Prefer reusing the framework instances over custom ones.
The local configuration uses system properties and the environment (replacing dots per underscores) to look up the values. You can also put a TALEND-INF/local-configuration.properties file with default values. This allows to use the local_configuration:
Components are designed to manipulate data (access, read, create). Talend Component Kit can handle several types of data, described in this document. By design, the framework must run in DI (plain standalone Java program) and in Beam pipelines. It is out of scope of the framework to handle the way the runtime serializes - if needed - the data. For that reason, it is critical not to import serialization constraints to the stack. As an example, this is one of the reasons why Record or jsonObject were preferred to Avro IndexedRecord. Any serialization concern should either be hidden in the framework runtime (outside of the component developer scope) or in the runtime integration with the framework (for example, Beam integration). Record is the default format. It offers many possibilities and can evolve depending on the Talend platform needs. Its structure is data-driven and exposes a schema that allows to browse it. Projects generated from the Talend Component Kit Starter are by default designed to handle this format of data. Record is a Java interface but never implement it yourself to ensure compatibility with the different Talend products. Follow the guidelines below. You can build records using the newRecordBuilder method of the RecordBuilderFactory (see here). For example: In the example above, the schema is dynamically computed from the data. You can also do it using a pre-built schema, as follows: The example above uses a schema that was pre-built using factory.newSchemaBuilder(Schema.Type.RECORD). When using a pre-built schema, the entries passed to the record builder are validated. It means that if you pass a null value null or an entry type that does not match the provided schema, the record creation fails. It also fails if you try to add an entry which does not exist or if you did not set a not nullable entry. Using a dynamic schema can be useful on the backend but can lead users to more issues when creating a pipeline to process the data. Using a pre-built schema is more reliable for end-users. You can access and read data by relying on the getSchema method, which provides you with the available entries (columns) of a record. The Entry exposes the type of its value, which lets you access the value through the corresponding method. For example, the Schema.Type.STRING type implies using the getString method of the record. For example: The Record format supports the following data types: String Boolean Int Long Float Double DateTime Array Bytes Record A map can always be modelized as a list (array of records with key and value entries). For example: For example, you can use the API to provide the schema. The following method needs to be implemented in a service. Manually constructing the schema without any data: Returning the schema from an already built record: MyDataset is the class that defines the dataset. Learn more about datasets and datastores in this document. Entry names for Record and jsonObject types must comply with the following rules: The name must start with a letter or with _. If not, the invalid characters are ignored until the first valid character. Following characters of the name must be a letter, a number, or . If not, the invalid character is replaced with . For example: 1foo becomes foo. f@o becomes f_o. 1234f5@o becomes ___f5_o. foo123 stays foo123. Each array uses only one schema for all of its elements. If an array contains several elements, they must be of the same data type. For example, the following array is not correct as it contains a string and an object: The runtime also supports jsonObject as input and output component type. You can rely on the json services (jsonb, jsonBuilderFactory) to create new instances. This format is close to the Record format, except that it does not natively support the Datetime type and has a unique Number type to represent Int, Long, Float and Double types. It also does not provide entry metadata like nullable or comment, for example. It also inherits the Record format limitations. The runtime also accepts any POJO as input and output component type. In this case, it uses json-B to treat it as a jsonObject.
TCOMP-2475: Migration from higher version not protected for a connector component-manager
TCOMP-2631: CarMain decodes badly encoded windows path maven-plugin
TCOMP-2632: Fix _placeholder validator and auto fix them and _displayName maven-plugin
TCOMP-2633: Load package-info class from nested sources component-manager
TCOMP-2635: Schema/Record subtype handling schema-record
TCOMP-2679: Handle svg icons in Studio component-server studio-integration
TCOMP-2682: Update svg validator mojo build maven-plugin
TCOMP-2475: Migration from higher version not protected for a connector component-manager
TCOMP-2631: CarMain decodes badly encoded windows path maven-plugin
TCOMP-2632: Fix _placeholder validator and auto fix them and _displayName maven-plugin
TCOMP-2633: Load package-info class from nested sources component-manager
TCOMP-2635: Schema/Record subtype handling schema-record
TCOMP-2679: Handle svg icons in Studio component-server studio-integration
TCOMP-2682: Update svg validator mojo build maven-plugin
TCOMP-2384: Wrong studio mapping on sub records studio-integration
TCOMP-2342: httpclient - Guesschema displays dialogbox to execute the connector if it can’t be inferred. studio studio-integration
TCOMP-2283: Handle Dynamic, Document and Byte column types in guess schema studio studio-integration
TCOMP-2522: Upgrade johnzon to 1.2.21 component-manager
TCOMP-2590: Upgrade tomcat to 9.0.84 component-server
TCOMP-2339: Remove static modifier in BeamProducerFinder beam
TCOMP-2557: [TCK]: unable to test connection well if the password contains ^ component-server studio studio-integration
TCOMP-2564: component-starter image issues tsbi
TCOMP-2565: Dynamic schema with generic JDBCconnection fails with wrong dbtype
TCOMP-2582: Can’t create components on starter-toolkit.talend.io intellij starter
TCOMP-2144: Create a validation rule for good usage of Schema and Record
TCOMP-2533: consider to remove the verbose debug log for DIRowStructVisitor and DIRecordVisitor and MappingUtils studio-integration
TCOMP-2550: Upgrade avro to 1.11.3 beam schema-record
TCOMP-2552: support custom connection/close component icon for tck connector in studio component-server
TCOMP-2558: Upgrade guava to 32.1.3-jre build
TCOMP-2559: Upgrade lombok to 1.18.30 build
TCOMP-2560: Upgrade junit to 5.10.0 testing
TCOMP-2562: remove grpc from beam-runners-spark-3 beam
TCOMP-2571: Bind metrics in prometheus format to Kubernetes Monitoring system component-server
TCOMP-2578: Remove geronimo-opentracing from component-server component-server vault-client
TCOMP-2564: component-starter image issues tsbi
TCOMP-2533: consider to remove the verbose debug log for DIRowStructVisitor and DIRecordVisitor and MappingUtils studio-integration
TCOMP-2552: support custom connection/close component icon for tck connector in studio component-server
TCOMP-2464: API action/execute error message not correct component-server
TCOMP-2540: Synchronize entryMap feeding beam schema-record testing
TCOMP-2541: Improve performance on dynamic column studio-integration
TCOMP-2535: Allow optional outgoing row on Input connectors studio studio-integration
TCOMP-2374: DIRecordVisitor to fill Studio Dynamic object’s column name by tck Schema.Entry.getName which must follow tck name rule schema-record studio-integration
TCOMP-2506: upgrade avro to 1.11.x for component-runtime beam schema-record
TCOMP-2538: Upgrade commons-compress to 1.24.0
TCOMP-2539: Upgrade jgit to 6.7.0.202309050840-r
TCOMP-2543: Upgrade TSBI to 4.0.1-20230911145727 build tsbi
TCOMP-2544: Upgrade snappy to 1.1.10.5
TCOMP-2545: Upgrade tomcat to 9.0.81 component-server
TCOMP-2547: Upgrade netty to 4.1.100.Final testing
TCOMP-2548: Upgrade tomcat to 9.0.82 component-server
TCOMP-2540: Synchronize entryMap feeding beam schema-record testing
TCOMP-2506: upgrade avro to 1.11.x for component-runtime beam schema-record
TCOMP-2203: API documentation correction and improvements documentation
TCOMP-2520: Date column read as Dynamic from File goes as Record:Schema.Type.STRING and no field.pattern passed to connector runtime class schema-record studio-integration
TCOMP-2375: Improve performance on Schema/Record schema-record
TCOMP-2525: Upgrade netty to 4.1.97.Final
TCOMP-2526: Upgrade guava to 32.1.2-jre
TCOMP-2527: Upgrade tomcat to 9.0.80 component-server
TCOMP-2529: Upgrade batik to 1.17
TCOMP-2530: Upgrade ivy to 2.5.2
TCOMP-2507: Upgrade commons-compress to 1.23.0
TCOMP-2508: Upgrade commons-io to 2.13.0
TCOMP-2509: Upgrade cxf to 3.5.6
TCOMP-2510: Upgrade gmavenplus to 1.13.1
TCOMP-2511: Upgrade groovy to 3.0.18
TCOMP-2512: Upgrade jackson-databind/jackson to 2.15.2
TCOMP-2513: Upgrade jacoco to 0.8.10
TCOMP-2514: Upgrade java11.jaxb to 2.3.8
TCOMP-2515: Upgrade junit5 to 5.9.3
TCOMP-2516: Upgrade mvn to 3.8.8
TCOMP-2517: Upgrade surefire-plugin to 3.0.0
TCOMP-2518: Upgrade tomcat to 9.0.78
TCOMP-1897: Bulk API returns byte[] instead of a json component-server
TCOMP-2468: Can’t resolve component name when plugins have equal family name component-manager
TCOMP-2479: Error message for Min & Max annotation isn’t correct component-manager
TCOMP-2307: Upgrade beam to 2.46.0, Spark to 3.2.2 and Flink to 1.14 beam
TCOMP-2473: Upgrade netty to 4.1.94.Final testing
TCOMP-2474: Upgrade snappy to 1.1.10.1 beam
TCOMP-2437: Missing classpath elements on component-server for CE component-server
TCOMP-2447: Revert datetime instant management changes on AvroSchema beam
TCOMP-2406: Error logs when kill kafka streaming job component-manager
TCOMP-2443: Allow component-manager extensions for Studio studio studio-integration
TCOMP-2428: Stop deciphering vault secrets during migration process component-server vault-client
TCOMP-2440: Upgrade tomcat to 9.0.75 component-server
TCOMP-2441: Upgrade johnzon to 1.2.20 component-manager
TCOMP-2442: Upgrade jib-core to 0.24.0 component-server remote-engine-customizer starter
TCOMP-2451: Rework dependencies on config studio
TCOMP-2447: Revert datetime instant management changes on AvroSchema beam
TCOMP-2437: Missing classpath elements on component-server for CE component-server
TCOMP-2426: Missing Instant conversion to Long component-manager schema-record
TCOMP-2435: Port not assigned correctly on CE component-server
TCOMP-2407: Allow to deploy specific branch qualified artifacts build testing
TCOMP-2391: Phase out layerspector and migrate to JIB for TCK Api Test script build component-server remote-engine-customizer starter tsbi
TCOMP-2423: Upgrade netty to 4.1.92.Final testing
TCOMP-2424: Upgrade jackson to 2.15.0 beam
TCOMP-2437: Missing classpath elements on component-server for CE component-server
TCOMP-2435: Port not assigned correctly on CE component-server
TCOMP-2426: Missing Instant conversion to Long component-manager schema-record
TCOMP-2293: Add Instant parameter type to withTimestamp method to avoid ms precision loss schema-record
TCOMP-2355: Error on language support for xx_YY language files component-server
TCOMP-2383: Guess schema - Can’t find component name Client component-manager
TCOMP-2389: There is no response when use guess schema for tNetSuiteV2019Input schema-record studio studio-integration
TCOMP-2414: Need add-opens for Pulsar Connector running with Java 17 component-server
TCOMP-2343: Guesschema - Improve error message schema-record studio-integration
TCOMP-2405: Upgrade snakeyaml to 2.0 build
TCOMP-2395: Upgrade meecrowave to 1.2.15 component-server
TCOMP-2369: Make DateTime option configurable api
TCOMP-2365: Add missing add-opens needed by some connectors to component-server component-server
TCOMP-2370: [RunConv] Prep output: the "operation key" field in additional parameters had an empty list instead of the list of table columns. component-server
TCOMP-2348: Upgrade tomcat to 9.0.69 component-server
TCOMP-2349: Upgrade netty to 4.1.87.Final testing
TCOMP-2366: Replace JAVA_OPTS by JDK_JAVA_OPTIONS component-server
TCOMP-2371: [TCK JDBC]: Studio dynamic column metadata info : isKey should follow runtime dynamic object, not the input component’s studio schema studio-integration
TCOMP-2365: Add missing add-opens needed by some connectors to component-server component-server
TCOMP-2370: [RunConv] Prep output: the "operation key" field in additional parameters had an empty list instead of the list of table columns. component-server
TCOMP-2366: Replace JAVA_OPTS by JDK_JAVA_OPTIONS component-server
TCOMP-2165: Support connectors in TOS schema-record studio studio-integration
TCOMP-2330: Improve JVM version check component-manager
TCOMP-2327: Upgrade cxf to 3.5.5 due to CVE-2022-46364
TCOMP-2328: Upgrade woodstox to 6.4.0 due to CVE-2022-40152
TCOMP-2334: Upgrade netty to 4.1.86.Final testing
TCOMP-2335: Upgrade commons-net to 3.9.0 documentation
TCOMP-2336: Allow component-server to not fail on empty/not found component-registry descriptor component-server
TCOMP-2340: Reduce warning on jmx registration component-manager
TCOMP-2365: Add missing add-opens needed by some connectors to component-server component-server
TCOMP-2370: [RunConv] Prep output: the "operation key" field in additional parameters had an empty list instead of the list of table columns. component-server
TCOMP-2366: Replace JAVA_OPTS by JDK_JAVA_OPTIONS component-server
TCOMP-2330: Improve JVM version check component-manager
TCOMP-2327: Upgrade cxf to 3.5.5 due to CVE-2022-46364
TCOMP-2328: Upgrade woodstox to 6.4.0 due to CVE-2022-40152
TCOMP-2311: DiscoverSchemaExtended validation is too strict maven-plugin
TCOMP-2313: Entries order is not preserved when updating entry name schema-record
TCOMP-2321: Record.Builder.with() does not allow null value for datetime schema-record
TCOMP-2237: Create a streaming configuration section for documentation documentation
TCOMP-2308: component-runtime-http-junit capture headers case sensitivity testing
TCOMP-2365: Add missing add-opens needed by some connectors to component-server component-server
TCOMP-2370: [RunConv] Prep output: the "operation key" field in additional parameters had an empty list instead of the list of table columns. component-server
TCOMP-2366: Replace JAVA_OPTS by JDK_JAVA_OPTIONS component-server
TCOMP-2330: Improve JVM version check component-manager
TCOMP-2311: DiscoverSchemaExtended validation is too strict maven-plugin
TCOMP-2313: Entries order is not preserved when updating entry name schema-record
TCOMP-2241: [Runtime convergence] : Join connector fails - No translator known api beam
TCOMP-2303: Pattern validation error in jsonSchemaValidatorExt component-form
TCOMP-2304: talend-component:web goal may fail with java >= 17 maven-plugin
TCOMP-2277: Complete the TCK schema’s entry properties schema-record
TCOMP-2285: Support of qualifier in version of connectors to be loaded by the component manager component-manager
TCOMP-2291: Provide to streaming connectors the stop strategy applied component-manager
TCOMP-2297: Support flow return var for tck connector in studio studio studio-integration
TCOMP-2236: Streaming stop strategy in livy jobs beam component-manager
TCOMP-2265: Upgrade beam to 2.37.0 beam
TCOMP-2272: Use java 17 TSBI image for component-server component-server starter tsbi
TCOMP-2294: Upgrade batik to 1.16 maven-plugin
TCOMP-2295: Upgrade tomcat to 9.0.68 component-server
TCOMP-2296: Upgrade jsoup to 1.15.3 documentation
TCOMP-2298: Upgrade netty to 4.1.85.Final testing
TCOMP-2311: DiscoverSchemaExtended validation is too strict maven-plugin
TCOMP-2313: Entries order is not preserved when updating entry name schema-record
TCOMP-2303: Pattern validation error in jsonSchemaValidatorExt component-form
TCOMP-2241: [Runtime convergence] : Join connector fails - No translator known api beam
TCOMP-2236: Streaming stop strategy in livy jobs beam component-manager
TCOMP-2289: Payload validator fails on regexp matching component-manager
TCOMP-2186: Guess schema service for processors api schema-record
TCOMP-2276: Make Streaming stop strategy configurable component-manager studio
TCOMP-1998: Remove component-server-vault-proxy from cloud environments component-server component-server-vault-proxy helm-charts vault-client
TCOMP-2256: Replace nashorn javascript engine by rhino component-manager studio
TCOMP-2259: Support db column name/length/precision with guess schema for all types studio
TCOMP-2268: Upgrade jib to 0.22.0 remote-engine-customizer starter tsbi
TCOMP-2273: Upgrade TSBI to 3.0.8-20220928070500 component-server starter tsbi
TCOMP-2274: Move component-starter-server to TSBI starter
TCOMP-2275: Use java 17 TSBI image for CI build build tsbi
TCOMP-2286: Upgrade jackson to 2.13.4
TCOMP-2287: Upgrade commons-text to 1.10.0 documentation
TCOMP-2276: Make Streaming stop strategy configurable component-manager studio
TCOMP-2239: Fix Record.Builder interface to avoid API break schema-record
TCOMP-2226: Implement a default UI for streaming sources for user configuration of a StopStrategy component-form component-manager
TCOMP-2234: Override blocking read process in streaming connectors component-manager studio
TCOMP-2258: @Documentation to tooltips in uiSchema component-form component-server
TCOMP-2147: Decrease log level for blacklisted dependencies component-manager
TCOMP-2228: Upgrade git-commit-id-plugin to 4.9.10
TCOMP-2232: Upgrade slf4j to 1.7.34
TCOMP-2238: Upgrade jib-core to 0.16.0
TCOMP-2249: Upgrade johnzon to 1.2.19
TCOMP-2251: Upgrade jackson to 2.13.3
TCOMP-2252: MavenRepositoryResolver call fallback only it’s needed component-manager
TCOMP-2257: Upgrade meecrowave to 1.2.14 component-manager
TCOMP-2263: Upgrade openwebbeans-se to 2.0.27 component-manager
TCOMP-2264: Upgrade TSBI to 3.0.5-20220907120958 tsbi
TCOMP-2239: Fix Record.Builder interface to avoid API break schema-record
TCOMP-2182: Guess Schema in Studio always uses version of component 1 studio studio-integration
TCOMP-2190: Handle partial messages for large payloads in websocket communications component-server studio
TCOMP-2107: Implement a stop strategy for streaming input connectors component-manager studio
TCOMP-2177: Suppress illegal reflective access operation has occurred warnings component-manager
TCOMP-2163: [QA] Component Runtime API test Framework testing
TCOMP-2187: Introduce IntegerConstraintEnricher component-form
TCOMP-2204: Upgrade netty to 4.1.79.Final
TCOMP-2205: Upgrade crawler-commons to 1.3
TCOMP-2206: Upgrade guava to 31.1-jre
TCOMP-2207: Upgrade maven to 3.8.6
TCOMP-2208: Upgrade maven-shade-plugin to 3.3.0 build
TCOMP-2209: Upgrade junit5 to 5.9.0
TCOMP-2210: Upgrade tomcat to 9.0.63
TCOMP-2211: Upgrade cxf to 3.5.2
TCOMP-2212: Upgrade bndlib to 5.2.0
TCOMP-2217: Update rat-plugin to 0.14 build
TCOMP-2219: Add API to convert data in Record schema-record
TCOMP-2223: Upgrade log4j to 2.18.0
TCOMP-2227: Upgrade commons-io to 2.9.0
TCOMP-2229: Upgrade jcommander to 1.81
TCOMP-2230: Allow specific context UI
TCOMP-2233: support decimal type
TCOMP-2190: Handle partial messages for large payloads in websocket communications component-server studio
TCOMP-2177: Suppress illegal reflective access operation has occurred warnings component-manager
TCOMP-2177: Suppress illegal reflective access operation has occurred warnings component-manager
TCOMP-2176: Record : Infinite loop schema-record
TCOMP-2146: Car bundler improvements car-bundler maven-plugin
TCOMP-2151: Add documentation translation to metadata component-server
TCOMP-2132: Optimisation for preparation schema-record
TCOMP-2143: [JDBC TCK]: Support MODULE_LIST field for studio in tck connector ui for driver jars choose studio
TCOMP-2152: Upgrade jackson to 2.13.2 beam bom maven-plugin
TCOMP-2153: Bump netty to 4.1.77.Final due to CVE CVE-2022-24823 testing
TCOMP-2154: Upgrade maven-settings to 3.8.5 due to CVE-2021-26291 build
TCOMP-2155: Upgrade jdom2 to 2.0.6.1 due to CVE-2021-33813 beam
TCOMP-2164: Ensure that decryption is done only on credential fields component-server vault-client
TCOMP-2171: Add component type to ComponentIndex component-server
TCOMP-2152: Upgrade jackson to 2.13.2 beam bom maven-plugin
TCOMP-2146: Car bundler improvements car-bundler maven-plugin
TCOMP-2111: [Runtime convergence] : Join connector fails in cloud environment with hybrid tck/beam connectors api beam
TCOMP-2123: Bug on order columns for Avro Impl beam schema-record
TCOMP-2127: Fix avro records where array contains nullable array beam schema-record
TCOMP-2131: starter-toolkit fails when generating a connector from openapi description starter
TCOMP-2133: component-registry uses detailed version not baseVersion in snapshot case build maven-plugin
TCOMP-2134: Activate intellij plugin by default intellij starter
TCOMP-2138: starter-toolkit github repository creation process fails starter
TCOMP-2135: Component web tester in non interactive mode component-server maven-plugin testing
TCOMP-2126: give default implementation to Record.Builder to not break api api
TCOMP-2130: Add git informations in starter-toolkit’s environment starter
TCOMP-2127: Fix avro records where array contains nullable array beam schema-record
TCOMP-2130: Add git informations in starter-toolkit’s environment starter
TCOMP-2126: give default implementation to Record.Builder to not break api api
TCOMP-2085: Add extras manipulations on Record BuilderImpl beam schema-record
TCOMP-2102: Wrong maven resolution with car when using snapshot in prepare-repository goal build maven-plugin
TCOMP-2119: Avro Record : array containing Null. beam schema-record
TCOMP-2112: [JDBC] discover schema API is failing on production. build maven-plugin
TCOMP-2103: Link affected jira components to issue in changelog as keywords for search documentation
TCOMP-2098: Improve m2 discovery process documentation
TCOMP-2104: Header link should be linked to latest path documentation
TCOMP-2105: Upgrade Tomcat to 9.0.60 component-server maven-plugin starter
TCOMP-2108: Upgrade maven plugins
TCOMP-2109: Upgrade git-commit-id-plugin to 4.0.5
TCOMP-2110: Replace log4j by reload4j stitch
TCOMP-2114: Upgrade TSBI to 2.9.27-20220331162145 component-server component-server-vault-proxy starter tsbi
TCOMP-2115: Upgrade jackson to 2.12.6 due to CVE-2020-36518 bom
TCOMP-2116: Upgrade log4j2 to 2.17.2
TCOMP-2117: Upgrade slf4j to 1.7.33
TCOMP-2118: Upgrade tomcat to 9.0.62 (mitigation for CVE-2022-22965) component-server component-server-vault-proxy starter
TDI-47693 : fix misaligned openwebbeans-spi dependency studio
TCOMP-2003: Maven dependency classifier considered as version in dependencies.txt by Studio
TCOMP-2096: Support BigDecimal type in DI integration
TCOMP-2087: Upgrade Tomcat to 9.0.59 due to CVE-2022-23181
TCOMP-2088: Upgrade OpenWebBeans to 2.0.26
TCOMP-2089: Upgrade meecrowave to 1.2.13
TCOMP-2090: Upgrade johnzon to 1.2.16
TCOMP-2091: Upgrade Beam to 2.36.0
TCOMP-2092: MvnCoordinateToFileConverter fakes classifiers' support
TCOMP-2093: Improve component-runtime documentation site
TCOMP-2097: Upgrade cxf to 3.5.1
TCOMP-1803: RecordBuilder.withRecord(final String name, final Record value) doesn’t accept null value
TCOMP-2079: Intellij plugin fails on plugin startup
TCOMP-2080: AvroRecord refuses Union[null, RecordSchema]
TCOMP-2082: ComponentManager’s findDefaultM2 method takes comment as granted
TCOMP-2058: Add dependencies on config
TCOMP-2074: Change json log format to conform to ECS
TCOMP-2083: Give component-runtime version on ComponentManager startup
TCOMP-2084: Allow use of i18n in connectors' metadata for custom labels
TCOMP-2079: Intellij plugin fails on plugin startup
TCOMP-2080: AvroRecord refuses Union[null, RecordSchema]
TCOMP-2082: ComponentManager’s findDefaultM2 method takes comment as granted
TCOMP-2063: Avro Record Constructor
TCOMP-2064: NPE with lookup missconfiguration in Join processor
TCOMP-2067: Bug on order columns
TCOMP-2071: Define default methods on Schema / Entry / Record interfaces
TCOMP-2045: Pass and read meta information about columns.
TCOMP-2072: Ligthen parameters for component-server docker image
TCOMP-2057: AvroSchema : optimize getType by using type fields
TCOMP-2060: Upgrade log4j2 to 2.17.0 due to CVE-2021-45105
TCOMP-2061: Upgrade netty to 4.1.72.Final due to CVE-2021-43797
TCOMP-2065: Internationalized Services as Serializable
TCOMP-2068: Upgrade log4j2 to 2.17.1 due to CVE-2021-44832
TCOMP-2069: Create a latest tag for component-runtime images
TCOMP-2070: Upgrade TSBI to 2.9.18-20220104141654
TCOMP-2073: Upgrade maven-core to 3.8.4 due to CVE
TCOMP-2047: RecordBuilder in RowstructVisitor keeps values
TCOMP-2048: RowstructVisitor should respect case in member not java convention
TCOMP-2049: Incompatible class change on Entry
TCOMP-2053: Migration failing when using custom java code in configuration
TCOMP-2018: Optimize Avro Record
TCOMP-2054: Upgrade log4j2 to 2.16.0 due to CVE-2021-44228
TCOMP-2053: Migration failing when using custom java code in configuration
TCOMP-2054: Upgrade log4j2 to 2.16.0 due to CVE-2021-44228
TCOMP-2049: Incompatible class change on Entry
TCOMP-2047: RecordBuilder in RowstructVisitor keeps values
TCOMP-2048: RowstructVisitor should respect case in member not java convention
TCOMP-2019: Sanitized columns name collision support
TCOMP-2021: Missing logic when handling null date values in Record
TCOMP-2046: Rowstruct visitor recreates schema at each incoming row
TCOMP-2004: [Runtime convergence] New tck/API to retrieve dataset full content
TCOMP-2008: Add ability to insert a schema entry on Record BuilderImpl
TCOMP-1924: Support Java 17 runtime
TCOMP-2023: Upgrade gradle to 6.9.1
TCOMP-2024: Upgrade maven-bundle-plugin to 4.2.1
TCOMP-2025: Upgrade documentation to latest
TCOMP-2027: Upgrage junit to 5.8.1
TCOMP-2028: Provide nashorn scripting engine when using java15+
TCOMP-2029: Upgrade jaxb to 2.3.5
TCOMP-2030: Upgrade Tomcat to 9.0.54 due to CVE-2021-42340
TCOMP-2031: Upgrade Beam to 2.33.0
TCOMP-2032: Upgrade Spark to 3.2.0
TCOMP-2035: Check build w/ Java 17 on CI
TCOMP-2036: Upgrade cxf to 3.4.5
TCOMP-2037: Upgrade johnzon to 1.2.15
TCOMP-2038: Upgrade bouncycastle to 1.69
TCOMP-2042: Return a key related to version of connector services and its content
TCOMP-2043: Upgrade spotless to 2.17.3 and talend-java-formatter to 0.2.2
TCOMP-2044: Upgrade TSBI to 2.9.2-20211106085418
TCOMP-2590: Upgrade tomcat to 9.0.84 component-server
TCOMP-2548: Upgrade tomcat to 9.0.82 component-server
TCOMP-2263: Upgrade openwebbeans-se to 2.0.27 component-manager
TCOMP-2395: Upgrade meecrowave to 1.2.15 component-server
TCOMP-2527: Upgrade tomcat to 9.0.80 component-server
TCOMP-2412: Upgrade tomcat to 9.0.69 component-server
TCOMP-2327: Upgrade cxf to 3.5.5 due to CVE-2022-46364
TCOMP-2328: Upgrade woodstox to 6.4.0 due to CVE-2022-40152
TCOMP-2294: Upgrade batik to 1.16 maven-plugin
TCOMP-2295: Upgrade tomcat to 9.0.68 component-server
TCOMP-2045: Pass and read meta information about columns. studio-integration
TCOMP-2096: Support BigDecimal type in DI integration schema-record studio studio-integration
TCOMP-2070: Upgrade TSBI to 2.9.18-20220104141654 build component-server component-server-vault-proxy tsbi
TCOMP-2105: Upgrade Tomcat to 9.0.60 component-server maven-plugin starter
TCOMP-2030: Upgrade Tomcat to 9.0.54 due to CVE-2021-42340
TCOMP-2053: Migration failing when using custom java code in configuration
TCOMP-2054: Upgrade log4j2 to 2.16.0 due to CVE-2021-44228
TCOMP-2048: RowstructVisitor should respect case in member not java convention
TCOMP-2047: RecordBuilder in RowstructVisitor keeps values
TCOMP-2046: Rowstruct visitor recreates schema at each incoming row
TCOMP-1963: Missing IMetaDataColumn fields in guess schema
TCOMP-1987: Avro record : Array of Array of records issue
TCOMP-1988: Unable to run component-runtime connectors in Studio with JDK 17
TCOMP-2005: Non defined columns appear in schema
TCOMP-2006: Support empty values for Numbers case
TCOMP-2010: Error on Documentation build on "less" usage
TCOMP-2020: talend-component-kit-intellij-plugin module build fails using Bintray (decomissioned)
TCOMP-1900: Create jenkins release process for component-runtime
TCOMP-1997: Enable plugins reloading according criteria
TCOMP-2000: Upgrade netty to 4.1.68.Final
TCOMP-2001: Upgrade Beam to 2.32.0
TCOMP-2007: connectors as a json object in Environment
TCOMP-2009: Upgrade dockerfile-maven-plugin to 1.4.13
TCOMP-2016: UiSchema can’t hold advanced titleMap for more advanded datalist widgets
TCOMP-2007: connectors as a json object in Environment
TCOMP-1957: Avro schema builder issue
TCOMP-1994: WebSocketClient$ClientException when executing action in Studio
TCOMP-1923: Record : add metadata
TCOMP-1990: Update jsoup to 1.14.2 due to CVE-2021-37714
TCOMP-1991: Update groovy to 3.0.9 due to CVE-2021-36373 / CVE-2021-36374
TCOMP-1992: Update lombok to 1.18.20
TCOMP-1993: Update TSBI to 2.9.0-20210907155713
TCOMP-1995: Expose the connectors (global) version in the "Environment" response
TCOMP-1996: BaseService must not define equals & hashcode
TCOMP-1994: WebSocketClient$ClientException when executing action in Studio
TCOMP-1904: Delegate Avro record in AvroRecord seems to be invalid
TCOMP-1967: goal uispec generation failure
TCOMP-1983: fix module inclusion in dependencies.txt when build is java9+
TCOMP-1981: Allow to filter artifacts in car file generation
TCOMP-1982: Allow to include extra artifacts in car file generation
TCOMP-1876: Make schemaImpl immutable
TCOMP-1885: Service Serializable
TCOMP-1906: Redefine equals on RecordImpl
TCOMP-1955: Upgrade cxf to 3.4.4 due to CVE-2021-30468
TCOMP-1966: Upgrade Tomcat to 9.0.50 due to CVE-2021-33037
TCOMP-1968: Upgrade maven to 3.8.1
TCOMP-1969: Upgrade Beam to 2.31.0
TCOMP-1970: Upgrade jackson to 2.12.1
TCOMP-1971: Upgrade Junit to 5.8.0-M1
TCOMP-1972: Upgrade slf4j to 1.7.32
TCOMP-1973: Upgrade log4j to 2.14.1
TCOMP-1974: Upgrade commons-compress to 1.21 due to CVE-2021-36090
TCOMP-1975: Upgrade TSBI to 2.8.2-20210722144648
TCOMP-1976: Upgrade meecrowave to 1.2.11
TCOMP-1977: Upgrade OpenWebBeans to 2.0.23
TCOMP-1978: Upgrade tomcat to 9.0.44
TCOMP-1979: Upgrade xbean to 4.20
TCOMP-1980: Upgrade meecrowave to 1.2.12
TCOMP-1967: goal uispec generation failure
TCOMP-1935: After Variables doesn’t support custom object types
TCOMP-1941: Maven goal talend-component:web fails on startup
TCOMP-1947: Implement a retry strategy on failure in vault-client
TCOMP-1948: Raised exception in component-server(s) should be serialized in json
TCOMP-1952: IllegalArgumentException when the http response return duplicated header.
TCOMP-1939: Upgrade TSBI to Talend 2.7.2-20210616074048
TCOMP-1940: Upgrade Beam to 2.30.0
TCOMP-1941: Maven goal talend-component:web fails on startup
TCOMP-1939: Upgrade TSBI to Talend 2.7.2-20210616074048
TCOMP-1919: Sanitize must force encoding file
TCOMP-1925: Incorrect mapping of the parameters after arrays
TCOMP-1937: Classpath not fully parsed in TSBI images
TCOMP-1917: Add DatasetDiscovery annotation
TCOMP-1707: Upgrade Geronimo :: Simple JCache to 1.0.5
TCOMP-1850: component-server with vault feature
TCOMP-1907: Service monitor implementation & cleaning of grafana dashboard
TCOMP-1921: Upgrade TSBI to 2.7.0-20210527090437
TCOMP-1930: Remove jsoup 1.7.x transitive dependency due to CVE-2015-6748
TCOMP-1936: Extend properties in Schema to use jsonValue
TCOMP-1938: Add the german locale in the locale mapping
TCOMP-1938: Add the german locale in the locale mapping
TCOMP-1937: Classpath not fully parsed in TSBI images
TCOMP-1919: Sanitize must force encoding file
TCOMP-1886: Errors on Schema.sanitizeConnectionName
TCOMP-1905: component-runtime fails to build with Java 11
TCOMP-1893: Upgrade to Beam 2.29.0 and use Beam’s Spark 3 specific module
TCOMP-705: Support After variables
TCOMP-1898: Add method to Record.Builder
TCOMP-1910: Upgrade commons-io to 2.8.0 due to CVE-2021-29425
TCOMP-1911: Upgrade cxf to 3.4.3 due to CVE-2021-22696
TCOMP-1912: Upgrade TSBI to 2.6.7-20210503202416
TCOMP-1938: Add the german locale in the locale mapping
TCOMP-1937: Classpath not fully parsed in TSBI images
TCOMP-1880: Engine Server returns binary data instead of json (aka does not respect the compressed header)
TCOMP-1886: Errors on Schema.sanitizeConnectionName
TCOMP-1815: Support of ComponentException in migration
TCOMP-1873: Add method getEntry on TCK Record Schema class
TCOMP-1892: Upgrade Spark to 3.0.1
TCOMP-1888: Remove/change validation of ComponentException
TCOMP-1894: Uniformize docker images entrypoints
TCOMP-1895: Enhance coercion in RecordConverters
TCOMP-1896: Upgrade TSBI to 2.6.4-20210331133410
TCOMP-1806: Double values are rounded to 5 decimal places in studio
TCOMP-1851: HttpClient implementation class is a Service with State
TCOMP-1864: jsonSchemaConverter and johnzon-jsonschema 1.2.9+ look incompatible
TCOMP-1866: Invalid number coercion on primitive type
TCOMP-1869: byte[] handling is incorrect in dynamic column
TCOMP-1871: Dynamic metadata name is not sanitized
TCOMP-1861: Add a 'props' property in the Schema
TCOMP-1863: Upgrade batik-codec to 1.14 due to CVE-2020-11988
TCOMP-1865: Upgrade cxf to 3.4.2
TCOMP-1867: Upgrade Apache Beam to 2.28.0
TCOMP-1878: Upgrade TSBI to 2.6.3-20210304090015
TCOMP-1688: Rewrite jsonSchema required rules to reflect component’s validation rules
TCOMP-1857: Pojo conversion don’t support nested Objects
TCOMP-1841: Add a SPI that would allow to add metadata to components
TCOMP-1847: Upgrade Apache Beam to 2.27.0
TCOMP-1848: Upgrade bouncycastle to 1.68 due to CVE 2020-28052
TCOMP-1849: Proxify metrics component-server’s endpoint
TCOMP-1852: Upgrade netty to v4.1.58.Final and ensure default http testing module is java 11 friendly over ssl
TCOMP-1854: Upgrade netty to 4.1.59.Final due to CVE-2021-21290
TCOMP-1855: Upgrade johnzon to 1.2.10
TCOMP-1856: Upgrade tomcat to 9.0.43
TCOMP-1841: Add a SPI that would allow to add metadata to components
TCOMP-1852: Upgrade netty to v4.1.58.Final and ensure default http testing module is java 11 friendly over ssl
TCOMP-1854: Upgrade netty to 4.1.59.Final due to CVE-2021-21290
TCOMP-1848: Upgrade bouncycastle to 1.68 due to CVE 2020-28052
TCOMP-1839: Tomcat websocket server fails to start after tomcat 9.0.40 and meecrowave 1.2.10
TCOMP-1836: Upgrade OpenWebBeans to 2.0.20
TCOMP-1837: Upgrade xbean to 4.18
TCOMP-1838: Upgrade cxf to 3.4.1
TCOMP-1840: Upgrade tomcat to 9.0.41
TCOMP-1842: Upgrade jgit to 5.10.0.202012080955-r
TCOMP-1844: Upgrade johnzon to 1.2.9
TCOMP-1845: Upgrade guava to 30.1-jre due to CVE-2020-8908
TCOMP-1848: Upgrade bouncycastle to 1.68 due to CVE 2020-28052
TCOMP-1839: Tomcat websocket server fails to start after tomcat 9.0.40 and meecrowave 1.2.10
TCOMP-1836: Upgrade OpenWebBeans to 2.0.20
TCOMP-1837: Upgrade xbean to 4.18
TCOMP-1827: Upgrade lombok to 1.18.16
TCOMP-1828: Change project’s versioning scheme
TCOMP-1829: Upgrade TSBI to 2.5.3-20201201131449
TCOMP-1830: Upgrade Apache Beam to 2.26.0
TCOMP-1832: Upgrade httpclient to 4.5.13 due to CVE-2020-13956
TCOMP-1833: Upgrade spark to 2.4.7
TCOMP-1834: Upgrade groovy to 3.0.7 due to CVE-2020-17521
TCOMP-1787: ComponentManager can’t be re-created after it’s been closed
TCOMP-1788: Invalid properties validation
TCOMP-1801: Can’t look for resources in the classpath on Windows
TCOMP-1761: Support of complete schema definition
TCOMP-1725: Upgrade Tomcat to 9.0.40
TCOMP-1792: Uniform error message on component validation
TCOMP-1808: Upgrade log4j2 to 2.14.0
TCOMP-1809: Update CXF to 3.3.8 due to CVE-2020-13954
TCOMP-1812: Upgrade junit to 4.13.1 due to CVE-2020-15250
TCOMP-1813: Upgrade jupiter to 5.7.0
TCOMP-1816: Apache Maven Shared Utils: OS Command Injection in Talend/component-runtime (master) and Talend/cloud-components
TCOMP-1817: Upgrade gmavenplus-plugin to 1.11.0
TCOMP-1722: REST - Last / in endpoint is removed
TCOMP-1757: Studio - context not set when call a @suggestable service
TCOMP-1772: Code widget doesn’t allow multiline text
TCOMP-1726: Update logos and colors
TCOMP-1771: Record builder optimization (with static schema)
TCOMP-1773: Upgrade log4j2 to 2.13.3
TCOMP-1774: Upgrade johnzon to 1.2.8
TCOMP-1775: Upgrade commons-lang3 to 3.11
TCOMP-1776: Upgrade commons-codec to 1.15
TCOMP-1777: Upgrade jgit to 5.9.0.202009080501-r
TCOMP-1778: Upgrade jib-core to 0.15.0
TCOMP-1779: Upgrade batik to 1.13
TCOMP-1780: Upgrade TSBI to 2.4.0-20200925092052
TCOMP-1781: Upgrade asciidoctorj to 2.4.1
TCOMP-1782: Upgrade rrd4j to 3.7
TCOMP-1783: Upgrade netty to 5.0.0.Alpha2
TCOMP-1784: Upgrade ziplock to 8.0.4
TCOMP-1785: Upgrade JRuby to 9.2.13.0
TCOMP-1786: Upgrade to Apache Beam 2.24.0
TCOMP-1804: Upgrade to Apache Beam 2.25.0
TCOMP-1805: Upgrade TSBI to 2.5.0-20201030171201
TCOMP-1770: Performance loss on Ouput components in Studio
TCOMP-1750: Deadlock at TPD job startup using the Component SDK and using the Workday component
TCOMP-1759: Guess schema mixes columns returned by tck service
TCOMP-1752: Make component-runtime class loader find classes in RemoteEngine JobServer
TCOMP-1764: Upgrade to Apache Beam 2.23.0
TCOMP-1719: Header responses for icon not propagated correctly from Component-server-vault-proxy
TCOMP-1733: NPE in Studio metadata connection with activeif on different layouts
TCOMP-1734: Studio froze when installing a patch with azure-dls-gen2-1.10.0-component.car
TCOMP-1736: JobImpl retrieves more than streaming.maxRecords parameter
TCOMP-1739: Use scala version defined on parent for Spark related components
TCOMP-1695: Support List type in Studio
TCOMP-1737: Allow to force installation of an already existing component with the car bundle
TCOMP-1728: Enforce use of the defined error contract in connectors
TCOMP-1731: Make connectors docker image TSBI compliant
TCOMP-1738: Upgrade to Apache Beam 2.22.0
TCOMP-1742: Upgrade johnzon to 1.2.7
TCOMP-1727: WebSocketContainer not present in ServletContext
TCOMP-1696: Definition of an error contract to handle expected errors
TCOMP-1729: Upgrade to Apache Beam 2.21.0
TCOMP-1730: Upgrade johnzon to 1.2.6
TCOMP-1719: Header responses for icon not propagated correctly from Component-server-vault-proxy
TCOMP-1649: Tomcat bump to 9.0.31 broke talend-component:web goal
TCOMP-1676: Starter-toolkit mvn package throws error when running for the first time
TCOMP-1677: Using other types than String in Studio’s context values causes compilation error
TCOMP-1679: Combination of @Required and @Suggestable on a field creates strange behaviour
TCOMP-1682: Remove key attribute in UISchema for containers
TCOMP-1686: antora helper function relativize corrupts documentation
TCOMP-1694: [MAVEN PLUGIN] validateSvg argument is ineffective
TCOMP-1698: UiSpecService injects a wrong property for suggestions and dynamic_values
TCOMP-1718: Duplicated code in RecordConverters
TCOMP-1702: Improve columns name
TCOMP-1655: Upgrade jib-core to 0.13.1
TCOMP-1656: Upgrade log4j2 to 2.13.1
TCOMP-1657: Upgrade maven to 3.6.3
TCOMP-1658: Upgrade groovy to 3.0.2
TCOMP-1659: Upgrade lombok to 1.18.12
TCOMP-1660: Upgrade commons-compress to 1.20
TCOMP-1661: Upgrade commons-codec to 1.14
TCOMP-1662: Upgrade guava to 28.2-jre
TCOMP-1663: Upgrade ziplock to 8.0.1
TCOMP-1664: Upgrade asciidoctorj to 2.2.0 and its dependencies
TCOMP-1665: Upgrade jackson to 2.10.3
TCOMP-1666: Upgrade batik-codec to 1.12
TCOMP-1667: Upgrade jgit to 5.6.1.202002131546-r
TCOMP-1668: Upgrade junit to 4.13
TCOMP-1669: Upgrade bouncycastle to 1.64
TCOMP-1670: Upgrade spark-core_2.11 to 2.4.5
TCOMP-1671: Upgrade maven-shade-plugin to 3.2.2
TCOMP-1672: Upgrade httpclient to 4.5.12
TCOMP-1673: Upgrade component-runtime-testing dependencies
TCOMP-1674: Upgrade tomitribe-crest to 0.14
TCOMP-1678: Upgrade jgit to 5.7.0.202003090808-r
TCOMP-1685: Provide docker images based on TSBI
TCOMP-1687: More explicit exception messsage on reflection for findField
TCOMP-1690: Upgrade netty to 4.1.48.Final
TCOMP-1692: Update CXF to 3.3.6 due to CVE-2020-1954
TCOMP-1697: Update BouncyCastle to 1.65
TCOMP-1703: Upgrade log4j-2 to 2.13.2
TCOMP-1705: Upgrade to Apache Beam 2.20.0
TCOMP-1706: Upgrade OpenWebBeans to 2.0.16
TCOMP-1708: Upgrade groovy to 3.0.3
TCOMP-1710: Upgrade johnzon to 1.2.5
TCOMP-1711: Upgrade guava to 29.0-jre
TCOMP-1712: Upgrade commons-lang3 to 3.10
TCOMP-1713: Upgrade jackson to 2.11.0
TCOMP-1714: Upgrade junit to 5.7.0-M1
TCOMP-1716: Upgrade maven shade plugin to 3.2.3 and misc libs
TCOMP-1639: component-server incorrect response set in request
TCOMP-1640: Ensure Intellij plugin works with Intellij Idea IU-201
TCOMP-1641: Upgrade OpenWebBeans to 2.0.15
TCOMP-1642: Upgrade Groovy to 3.0.1
TCOMP-1643: Add automatic scheduling eviction system on LocalCache
TCOMP-1644: Upgrade log4j to 2.13.0
TCOMP-1645: Ensure correct wording is used in @Documentation
TCOMP-1647: Upgrade netty to 4.1.45.Final
TCOMP-1648: Unsafe Dependancy Resolution on jcommander
TCOMP-1638: Inject services to delegate in proxy
TCOMP-1619: Handle correctly DATETIME field type on AvroRecord
TCOMP-1622: [DOC] @Icon is not supported on datastore/dataset
TCOMP-1623: Change scheme for maven repos
TCOMP-1628: Manage BigDecimal in RecordConverter
TCOMP-1629: Ensure LocalConfiguration environment source replace dot with _
TCOMP-1630: Avoid NPE when configurationByExample() is called in a list of primitive without values
TCOMP-1631: int attribute in pojo is transformed to double in a Record
TCOMP-1632: Add a way to evict cached data from LocalCache
TCOMP-1616: Upgrade OpenWebBeans to 2.0.14 in component-server and component-server-vault-proxy
TCOMP-1617: Move mocked api results to github pages
TCOMP-1618: Upgrade Junit to 5.6.0
TCOMP-1620: Upgrade to Apache Beam 2.18.0
TCOMP-1621: Upgrade to Johnzon 1.2.3
TCOMP-1624: @Service does not support list injections
TCOMP-1625: Upgrade to xbean 4.16
TCOMP-1626: Ensure ContainerListenerExtensions can be sorted
TCOMP-1627: Upgrade to Apache Beam 2.19.0
TCOMP-1633: Upgrade Groovy to 3.0.0
TCOMP-1634: Upgrade tomcat to 9.0.31
TCOMP-1596: Windows URI are broken
TCOMP-1597: Httpclient does not support multi query parameters
TCOMP-1598: validator task uses ENGLISH locale to validate instead of root one
TCOMP-1612: Starter toolkit shouldn’t use the default 'STAR' icon in demo component
TCOMP-1585: Upgrade netty to 4.1.43.Final
TCOMP-1586: Upgrade ziplock to v8.0.0
TCOMP-1587: Upgrade jib to v0.12.0
TCOMP-1588: Upgrade JRuby to v9.2.9.0
TCOMP-1589: Upgrade crest to v0.11.0
TCOMP-1591: Update to Tomcat 9.0.29
TCOMP-1592: Update to Johnzon 1.2.2
TCOMP-1593: Update to OpenWebBeans 2.0.13
TCOMP-1595: Infinite partitionmapper shouldn’t require assesor
TCOMP-1599: More unsafe usage tolerance on JVM versions
TCOMP-1600: Upgrade to Tomcat 9.0.30
TCOMP-1606: Ensure job dsl can stop infinite inputs
TCOMP-1608: Upgrade geronimo openapi to 1.0.12
TCOMP-1609: Ensure Intellij plugin works with Intellij Idea 2019
TCOMP-1611: Upgrade to Apache Beam 2.17.0
TCOMP-1613: Upgrade cxf to 3.3.5
TCOMP-1614: Upgrade groovy to 3.0.0-rc3
TCOMP-1615: Upgrade OpenWebBeans to 2.0.14
TCOMP-1752: Make component-runtime class loader find classes in RemoteEngine JobServer
TCOMP-1560: Min and Max error message during configuration validation are reversed
TCOMP-1563: Web Tester does not work anymore (maven/gradle goal/task)
TCOMP-1573: Body encoder is called twice for each query
TCOMP-1582: Deploy to Nexus 3.15 caused "Provided url doesn’t respond neither to Nexus 2 nor to Nexus 3 endpoints"
TCOMP-1576: Add the possibility to desactivate http client redirection in HTTP Configurer
TCOMP-1559: Support configuration of the maxBatchSize enablement
TCOMP-1561: Custom action type shouldn’t need to be enforced to define a family method
TCOMP-1562: Support jsonObject type in actions
TCOMP-1564: Move to java.nio.Path instead of java.io.File in component-runtime-manager stack where possible
TCOMP-1565: Upgade to Junit Jupiter 5.6.0-M1
TCOMP-1566: Don’t compute jvmMarkers per component module but once for all
TCOMP-1567: Cache Artifact path in case of reuse
TCOMP-1568: Lazily create the container services
TCOMP-1569: Upgrade starter to gradle 6.0-rc1
TCOMP-1570: Ensure starter adds _placeholder entries in Messages.properties
TCOMP-1571: Support [length] syntax to change array configuration
TCOMP-1572: Validate that @Option is not used on final fields
TCOMP-1574: Upgrade to CXF 3.3.4
TCOMP-1575: Upgrade to Spark 2.4.4
TCOMP-1577: Upgrade to xbean 4.15
TCOMP-1578: Upgrade asciidoctor-pdf to v1.5.0-beta.7
TCOMP-1581: Support JUnit5 meta annotations for our extensions
TCOMP-1702: Improve columns name
TCOMP-1685: Provide docker images based on TSBI
TCOMP-1558: org.talend.sdk.component.api.service.record.RecordService must be serializable
TCOMP-1548: Basic Remote Engine Customizer
TCOMP-1550: Component configuration instantiation can be slow for complex configurations
TCOMP-1551: ObjectFactory should default to fieldproperties when field injection is activated
TCOMP-1553: Simplify and widden excluded classes for with transformer support
TCOMP-1555: Upgrade to Tomcat 9.0.27
TCOMP-1556: Studio short, byte, BigDecimal and char types are wrong handled
TCOMP-1557: Upgrade to Beam 2.16.0
TCOMP-1509: Intellij plugin does not declare java module preventing the plugin to run under last versions
TCOMP-1526: Upgrade talend UI bundle (js) to 4.6.0
TCOMP-1533: json-B API does not enable to combine multiple adapters or (de)serializers in jsonbConfig
TCOMP-1536: @DefaultValue ignored in documentation generation
TCOMP-1541: Studio integration enforces json<→Record conversion instead of relying on rowStruct making number precision lost
TCOMP-1542: Validator plugin uses family instead of pluginId (artifactId) to validate local-configuration
TCOMP-1508: Don’t let Talend Starter Toolkit loose state on Enter in intellij
TCOMP-1543: Add a uispec mapper
TCOMP-1544: Update Geronimo json-P spec bundle to v1.3
TCOMP-1545: Update OpenWebBeans to version 2.0.12
TCOMP-1546: Update Meecrowave to 1.2.9
TCOMP-1547: Update Johnzon to 1.2.1
TCOMP-1279: Rewrite the pojo <→ record mapping to keep number types
TCOMP-1504: Apache Beam 2.14.0 upgrade
TCOMP-1505: Upgrade jackson-databind to 2.9.9.3
TCOMP-1506: Enable actions in bulk endpoint
TCOMP-1507: Upgrade to johnzon 1.1.13
TCOMP-1511: Upgrade cxf to v3.3.3
TCOMP-1513: Upgrade to Tomcat 9.0.24
TCOMP-1514: Provide a RecordService to simplify record enrichment coding in processors
TCOMP-1515: Record visitor API
TCOMP-1517: Use netty 4.1.39.Final in junit http tools
TCOMP-1518: Upgrade to slf4j 1.7.28
TCOMP-1519: Upgrade to jib-core 0.10.1
TCOMP-1520: Don’t use jsonNode with Avro Fields anymore
TCOMP-1521: Upgrade to Beam 2.15.0
TCOMP-1522: Basic singer/tap/stitch integration with kit components
TCOMP-1523: Upgrade Apache Geronimo OpenAPI to v1.0.11
TCOMP-1524: Upgrade starter to gradle 5.6
TCOMP-1525: Upgrade commons-compress to v1.19
TCOMP-1527: Remove beam Mapper/Processor wrapping support
TCOMP-1528: Upgrade to maven 3.6.2
TCOMP-1529: Asciidoctor 2.1.0 upgrade
TCOMP-1530: geronimo-annotation 1.2 upgrade
TCOMP-1532: Upgrade to Junit 5.5.2
TCOMP-1535: Upgrade to johnzon 1.2.0
TCOMP-1537: Upgrade to Tomcat 9.0.26
TCOMP-1538: Upgrade to jackson 2.9.10
TCOMP-1539: Rework default direct runner/spark classloader rules
TCOMP-1540: Ensure Asciidoctor documentation rendering releases properly JRuby threads (main usage only)
TCOMP-1478: /documentation/component/{id} internationalization does not work when embedded
TCOMP-1479: When generating the documentation, it can happen the lang is wrong due to ResourceBundle usage
TCOMP-1480: Servers docker images don’t have curl or wget available
TCOMP-1497: POJO to Record mapping is not supported in processors
TCOMP-1498: SVG2Mojo wrongly log the source file as being created
TCOMP-1499: component-form does not support array of object of object if 2 levels use the same field name
TCOMP-1500: Ensure component-form button have a key to have an id and propagate errors in the front
TCOMP-1503: EnvironmentSecuredFilter not working on /environment/
TCOMP-1482: Enable web tester to switch the language
TCOMP-1483: Enable to expose the documentation through the web tester
TCOMP-1485: Asciidoctor documentation does not enable titles (component name and configuration ones) to be translated
TCOMP-1486: Ensure locale mapping is configurable in component-server
TCOMP-1484: Junit 5.5.0 upgrade
TCOMP-1487: AsciidocMojo should only use ROOT locale by default
TCOMP-1488: Enable to translate gridlayout names
TCOMP-1489: Upgrade Tomcat to v9.0.22
TCOMP-1491: Upgrade JIB to v1.4.0
TCOMP-1492: Upgrade jackson-databind to 2.9.9.1
TCOMP-1493: Rewrite component exception to ensure they can be loaded after a serialization
TCOMP-1494: Upgrade to junit jupiter 5.5.1
TCOMP-1495: Upgrade to Geronimo OpenAPI 1.0.10
TCOMP-1496: [testing tool] MainInputFactory does not support Record
TCOMP-1501: Remove generate mojo
TCOMP-1502: [maven plugin] upgrade jib-core to 0.10.0
TCOMP-1469: Studio maven repository not found OOTB
TCOMP-1472: Connectors maven goal does not work in 1.1.10
TCOMP-1473: Docker image text log setup should use ISO8601 and not HH:mm:ss.SSS
TCOMP-1470: Upgrade Tomcat to v9.0.21
TCOMP-1471: Upgrade Geronimo OpenAPI to v1.0.9
TCOMP-1474: Ensure proxies definition are java >=11 friendly
TCOMP-1425: Spark classes not excluded anymore in component-runtime-beam leading to classloading issues
TCOMP-1427: dependencies.txt mojo uses timestamped versions for snapshots instead of just -SNAPSHOT
TCOMP-1431: [maven] Asciidoctor files should be attached with adoc extension and not jar one
TCOMP-1433: [form-model] itemwidget ignored from uischema builder
TCOMP-1438: Index cache can lead to invalid index list of component
TCOMP-1440: Bulk components without @ElementListener when used with component-extension (default in the server)
TCOMP-1441: Missing parameter init in the UiSchema Trigger builder
TCOMP-1446: Rework gradle lifecycle
TCOMP-1419: Upgrade build to groovy 2.5.7
TCOMP-1420: Upgrade maven compiler to 3.1.2
TCOMP-1422: Filter allowed beam classes in component-server image
TCOMP-1423: Enable to customize studio maven repository for deploy-studio maven and gradle goal/task
TCOMP-1426: Ensure Spark rule and @WithSpark uses a default version consistent with the runtime
TCOMP-1430: Deprecate built-in icons in favor of vendor specific icons
TCOMP-1432: basic dita generation for the component documentation
TCOMP-1434: [form-model] Add withCondition to UISchema builder
TCOMP-1435: Dont use beam_sdks_java_core shaded libraries
TCOMP-1437: Add infinite metadata to ComponentDetail
TCOMP-1444: Remove KnownJarsFilter since it is no more used to discover components
TCOMP-1445: Icon must support SVG
TCOMP-1448: [starter] provide a basic OpenAPI integration
TCOMP-1449: Upgrade XBean to v4.14
TCOMP-1450: Add a read-only bulk endpoint in component-server
TCOMP-1451: [upgrade] Johnzon 1.1.12
TCOMP-1452: [upgrade] Meecrowave 1.2.8
TCOMP-1453: Upgrade to CXF 3.3.2
TCOMP-1455: Prepare DateTime support in configurations
TCOMP-1457: Upgrade to Apache Beam 2.13.0
TCOMP-1458: Ensure _placeholder presence is encouraged and validated
TCOMP-1459: Experimental way to patch a component dependency
TCOMP-1461: Extension API for the validator plugin
TCOMP-1462: Validate through the corresponding build task provided SVG
TCOMP-1464: Upgrade to OpenWebBeans 2.0.11
TCOMP-1465: Upgrade to JUnit 5.5.0-RC1
TCOMP-1466: Upgrade to ziplock 8.0.0-M2
TCOMP-1467: Upgrade mock server (testing tool) to netty 5.0.0.Alpha2
TCOMP-1468: Support docker-compose >= 1.23 in vault-proxy
TCOMP-1374: ensure Utf8 avro strings don’t leak in AvroRecord API, even using get(Object.class, …)
TCOMP-1375: When two sources use the same dataset and one source has additional required parameter the validation fails
TCOMP-1384: Enhance studio guess schema algorithm to find implicitly the action to call if needed
TCOMP-1388: Can’t change the dataset name in starter
TCOMP-1389: Intellij starter fails to generate a project
TCOMP-1398: Using after option of @updateable can lead to a null pointer exception in component-form
TCOMP-1401: Documentation table is broken
TCOMP-1407: Databricks: interface javax.json.stream.jsonGeneratorFactory is not visible from class loader
TCOMP-1386: Add withRecord(String,Record) in Record.Builder
TCOMP-1387: Use icon bundle version 3.1.0
TCOMP-1412: Add rest and couchbase icon to component api
TCOMP-1376: Upgrade jupiter to 5.4.2
TCOMP-1385: talend.component.server.component.registry must be a list
TCOMP-1390: Move component-api to component-runtime repository
TCOMP-1392: Tomcat 9.0.19 upgrade
TCOMP-1402: Provide a placeholder for classpath extensions in docker images
TCOMP-1403: Upgrade asciidoctor to 2.0.0 and asciidoctor-pdf to alpha17
TCOMP-1404: Upgrade to Apache Beam 2.12.0
TCOMP-1408: Starter does not support types starting with a lowercase
TCOMP-1411: ComponentManager relies on beam jar name. This is unlikely and should move to beam integration module.
TCOMP-1417: Upgrade to Geronimo OpenAPI 1.0.8
TCOMP-1326: Avro Schema is not serializable as json so guess schema action does not work when compoennt-runtime-beam is present
TCOMP-1330: Shade extensions don’t inherit from pluginrepositories
TCOMP-1340: Tools webapp (talend-component:web) does not support changing the locale anymore
TCOMP-1343: Use LogicalTypes.timestampMillis() on DATETIME for avro record builder
TCOMP-1360: Renaming an option (@Option("custom")) does not work on fields of type object
TCOMP-1370: ImageM2Mojo does not set timestamp in the docker image leading to component-server having a wrong lastUpdated value
TCOMP-1372: Nested components don’t expose their doc deterministicly until it is overriden
TCOMP-1341: Register deploy in studio task OOTB in gradle extension
TCOMP-1325: Upgrade CXF to 3.3.1
TCOMP-1327: /environment iterates over deployed plugin for each call, this is not needed
TCOMP-1328: Upgrade to Beam 2.11.0
TCOMP-1329: Lazy initialize parameter model to have a quicker cold start in plain main(String[])
TCOMP-1331: Use java 8u191 as base docker image
TCOMP-1332: Provide a simple way to filter configurations and component on /index endpoints
TCOMP-1334: Add a mojo to generate the list of components/services classes
TCOMP-1335: Add in doc mojo table the type of configuration the parameter belongs to
TCOMP-1336: Allow output processors to only have an @AfterGroup taking the list of record of the group in parameter
TCOMP-1346: Upgrade to Tomcat 9.0.17
TCOMP-1347: Upgrade to Slf4j 1.7.26
TCOMP-1348: [form-core] Ensure suggestions trigger is bound to "change" event too
TCOMP-1349: [form-core] When a tab is empty, don’t show it
TCOMP-1350: talend.component.server.component.registry should support glob pattern
TCOMP-1351: Upgrade jsoup for Spark Cluster Testing module
TCOMP-1353: component-server must not use TALEND-INF/dependencies.txt but another path
TCOMP-1354: Enforce services to belong to the delcaring service class
TCOMP-1361: Upgrade to asciidoctorj 2.0.0-RC.1
TCOMP-1362: Beam Wrapped Components should throw shared exception types
TCOMP-1366: Upgrade to XBean 4.13 to not track all classes scanned
TCOMP-1371: Upgrade to Apache Geronimo OpenAPI 1.0.7
TCOMP-1307: support char and character types in configuration.
TCOMP-1312: Component-form-core shouldn’t trigger validation of object due to conditional visibility (only individual fields are validable)
TCOMP-1314: category field of the starter is broken
TCOMP-1316: [build] Ensure snapshot use timestamped versions in dependencies.txt
TCOMP-1306: Add RecordPointerFactory to enable to extract data from Record using json pointer spec
TCOMP-1315: Ensure @Internationalized can use shortnames too in Messages.properties
TCOMP-1303: Support docker configs/secrets in docker images
TCOMP-1304: Vault proxy should support token configuration
TCOMP-1305: Upgrade to beam 2.10.0
TCOMP-1308: Upgrade to Talend UI 2.6.0
TCOMP-1309: Upgrade to Component API 1.1.5
TCOMP-1310: Ensure there is a basic secured mecanism to store configuration data
TCOMP-1317: Use Apache Geronimo Microprofile Config extensions (docker and secured string)
TCOMP-1318: Upgrade to Apache Meecrowave 1.2.7
TCOMP-1319: Upgrade Apache Geronimo Metrics to 1.0.3
TCOMP-1320: Upgrade to Apache Geronimo OpenAPI 1.0.6
TCOMP-1321: Upgrade to Apache Geronimo OpenTracing 1.0.2
TCOMP-1322: Upgrade to Apache Geronimo Config 1.2.2
TCOMP-1263: When using @Updateable(after=xxx) the visibility condition (@ActiveIf) of the after field shouldn’t be inherited
TCOMP-1264: AvroSchema does not unwrap null(able types) to map to Schema model
TCOMP-1265: dataset / datastore cloud validation : allow nested configuration types
TCOMP-1267: /documentation does not filter properly component
TCOMP-1281: Add jackson-mapper-asl in docker image of the server
TCOMP-1298: Support restricted lists for @Proposable
TCOMP-1297: make max batch size property configurable for family and components through LocalConfiguration
TCOMP-1266: Enhance starter to support dataset and datastore
TCOMP-1268: Ensure /environment is not callable if not local or secured
TCOMP-1269: Ensure ErrorReportValve does not leak Tomcat version OOTB
TCOMP-1271: Upgrade to talend UI 2.3.0
TCOMP-1272: Move multiSelectTag to multiSelect for web environment
TCOMP-1273: [build/dev plugin] Automatically open the browser for talend-component:web task/goal
TCOMP-1276: Exclude xerces from component loadable resources for XMLReaderFactory
TCOMP-1282: Upgrade meecrowave to 1.2.6
TCOMP-1283: Upgrade cxf to 3.3.0
TCOMP-1284: Upgrade to johnzon 1.1.11
TCOMP-1292: Provide a vault friendly integration for the server
TCOMP-1293: Upgrade to Tomcat 9.0.16
TCOMP-1295: Ensure local-configuration.properties of a container are merged
TCOMP-1296: Ensure user can enrich families with custom jar+configuration
TCOMP-1245: Provided services (SPI) by tacokit not available
TCOMP-1246: Rework docker image setup to use jib
TCOMP-1247: Upgrade geronimo metrics to 1.0.2
TCOMP-1248: Upgrade to geronimo opentracing 1.0.3
TCOMP-1249: Provide segment extractor for doc endpoint
TCOMP-1250: Make component documentation (@Documentation on component) i18n friendly
TCOMP-1251: cache avrocoders used in SchemaRegistryCoder
TCOMP-1252: Remove html support in documentation endpoint
TCOMP-1253: Refine OpenAPI documentation
TCOMP-1256: Add mapDescriptorToClassLoader to create a classloader from a list of gav
TCOMP-1258: Support to build a Record from a provided Schema
TCOMP-1259: Add getOptional to Record
TCOMP-1223: byte[] not supported in AvroRecord (beam)
TCOMP-1222: Ensure @WithComponents and @Environment are compatible
TCOMP-1234: Upgrade to beam 2.9.0
TCOMP-1235: Upgrade to antora 2
TCOMP-1237: Upgrade component-api to 1.1.2
TCOMP-1238: Upgrade metrics and opentracing microprofile libraries in docker image to use Geronimo extensions
TCOMP-1239: OpenWebBeans 2.0.9 upgrade
TCOMP-1240: Johnzon 1.1.11 upgrade
TCOMP-1242: Runtime validation error message wrongly interpolated
TCOMP-1243: Ensure component classloader isolates the system classloader resources except for the JVM ones
TCOMP-1170: [regression] http testing module pom imports netty and jsonb stack
TCOMP-1181: tacokit can’t pass the long type field from ui rightly
TCOMP-1187: Job DSL does not support correctly parameters when they are URI/URL
TCOMP-1189: Ensure primitive are not nullable in Record model (builder)
TCOMP-1191: [beam] BeamIOTransformer does not support serialization of complex objects correctly
TCOMP-1192: Ensure Avro schema union is interpreted as nullable in Record Schema model
TCOMP-1194: [testing] Ensure BeamEnvironment adds component-runtime-beam
TCOMP-1196: Nested maven repository not used for component module
TCOMP-1197: Tacokit beam tests. NPE when creating the schema with RECORD type.
TCOMP-1198: Tacokit beam tests. SchemaParseException ⇒ drop unsupported characters
TCOMP-1200: Packages not defined from nested repository classes
TCOMP-1201: includeTransitiveDependencies option of nested-maven-repository does not work
TCOMP-1202: Refine avro classloading exclusion to accept hadoop and mapred packages
TCOMP-1205: Empty json object lead to NPE
TCOMP-1209: Ensure SerializableCoder is replaced with a contextual version to support Talend Component Kit classloading model
TCOMP-1210: BeamComponentExtension should let the exception go back to the caller when the transform fails
TCOMP-1215: Nested maven repository in jars don’t go through transformers
TCOMP-1218: Record entries order shouldn’t be sorted by the runtime
TCOMP-1185: Support maxBatchSize in Job test runner for standalone mode
TCOMP-1171: Remove component proxy server from the project
TCOMP-1182: Ensure the property editor for the configuration registers the default converters
TCOMP-1183: Upgrade JRuby to 9.2.4.0
TCOMP-1184: Avoid to do a group by key in BeamExecutor (job DSL) when not needed
TCOMP-1188: Tolerate null for dates in Records
TCOMP-1190: Enable secure processing for DocumentBuilderFactory instances
TCOMP-1193: Add injectable ContainerInfo with the containerId (plugin) in services
TCOMP-1195: Enable user to extend BeamEnvironment test tempalte more easily
TCOMP-1199: Nested repository not used when the classpath is not composed of a single jar
TCOMP-1204: [dependency upgrade] XBean 4.12
TCOMP-1207: [beam] add ContextualSerializableCoder
TCOMP-1213: Upgrade guava to v27 for testing modules
TCOMP-1216: Take into account the visibility for the parameter validation
TCOMP-1217: Add JVM system property talend.component.runtime.serialization.java.inputstream.whitelist for our custom object input stream
TCOMP-1219: Upgrade starter to gradle 5
TCOMP-1220: Upgrade Maven to 3.6.0 in starter
TCOMP-1121: [tacokit proxy] suggestion trigger creation issue
TCOMP-1122: [tacokit proxy] slefRefrence filter configuration type by name, type and family
TCOMP-1123: Processor component onNext duplicate columns in record for rowStructs
TCOMP-1126: UiSpecService shouldn’t show the documentation by default
TCOMP-1129: form core - $selfReference breaks triggers
TCOMP-1130: component form - default value of maxBatchSize prop loose it type.
TCOMP-1131: [beam integration] Ensure Coder is contextual (classloader)
TCOMP-1132: Ensure beam custom Coders implement equals.hashCode for beam contract
TCOMP-1148: Asciidoctor documentation fails for collection of objects
TCOMP-1149: [testing] BeamEnvironment does not reset PipelineOptionsFactory properly for beam > 2.4
TCOMP-1155: [proxy server] arrays not supporting null values in ConfigurationFormatter
TCOMP-1159: AvroSchema does not support DATETTIME type (beam module)
TCOMP-1168: Avro record implementation ignores nullable/union
TCOMP-1143: Ensure icons are validated and fail the build if a custom one is missing (validate mojo)
TCOMP-1112: Let beam PTransform define an @ElementListener method to set the component design (inputs/outputs)
TCOMP-1113: Simplify the scanning by assuming there is a TALEND-INF/dependencies.txt in components
TCOMP-1120: BeamMapperImpl.isStream not accurate for UnboundedSource
TCOMP-1124: Add /metrics endpoint
TCOMP-1125: Extend CustomPropertyConverter to pass the convertion context
TCOMP-1127: Record doesn’t support null values
TCOMP-1133: CXF 3.2.7 upgrade
TCOMP-1134: Ensure any input/output have a dataset
TCOMP-1135: Ensure any dataset has a datastore
TCOMP-1136: deprecate "generate" mojo
TCOMP-1145: [dependency upgrade] Beam 2.8.0
TCOMP-1146: implement infinite=true in PartitionMapper/Input
TCOMP-1150: Upgrade rat plugin to 0.13
TCOMP-1154: Required validation at runtime ignores lists and nested objects
TCOMP-1157: [dependency upgrade] Tomcat 9.0.13
TCOMP-1158: Enable JUnit test collector to use a static storage instead of thread related one
TCOMP-1160: Upgrade spark to 2.4.0
TCOMP-1161: Upgrade shade plugin to 3.2.1
TCOMP-1162: Upgrade nested-maven-repository shade transformers to support last maven versions
TCOMP-1163: Upgrade openwebbeans to 2.0.8
TCOMP-1164: Validate mojo does not log any success information
TCOMP-1165: Dependency mojo does not log any success information
TCOMP-1166: Documentation mojo does not log generated files properly
TCOMP-1167: Beam-Avro record name generation should use avro fingerprint to be more unique than current logic
TCOMP-1086: Fix documentation about DiscoverSchema
TCOMP-1064: Update action can’t receive List
The HTTP API intends to expose most Talend Component Kit features over HTTP. It is a standalone Java HTTP server.
The WebSocket protocol is activated for the endpoints. Endpoints then use /websocket/v1 as base instead of /api/v1. See WebSocket for more details.
Browse the API description using interface.
To make sure that the migration can be enabled, you need to set the version the component was created with in the execution configuration that you send to the server (component version is in component the detail endpoint). To do that, use tcomp::component::version key.
Endpoints that are intended to disappear will be deprecated. A X-Talend-Warning header will be returned with a message as value.
You can connect yo any endpoint by:
Replacing /api with /websocket
Appending /
This part is limited to specific kinds of Beam PTransform:
PTransform
The Component Kit Starter lets you design your components configuration and generates a ready-to-implement project structure. The Starter is available on the web or as an IntelliJ plugin. This tutorial shows you how to use the Component Kit Starter to generate new components for MySQL databases. Before starting, make sure that you have correctly setup your environment. See this section. When defining a project using the Starter, do not refresh the page to avoid losing your configuration. Before being able to create components, you need to define the general settings of the project: Create a folder on your local machine to store the resource files of the component you want to create. For example, C:/my_components. Open the Starter in the web browser of your choice. Select your build tool. This tutorial uses Maven, but you can select Gradle instead. Add any facet you need. For example, add the Talend Component Kit Testing facet to your project to automatically generate unit tests for the components created in the project. Enter the Component Family of the components you want to develop in the project. This name must be a valid java name and is recommended to be capitalized, for example 'MySQL'. Once you have implemented your components in the Studio, this name is displayed in the Palette to group all of the MySQL-related components you develop, and is also part of your component name. Select the Category of the components you want to create in the current project. As MySQL is a kind of database, select Databases in this tutorial. This Databases category is used and displayed as the parent family of the MySQL group in the Palette of the Studio. Complete the project metadata by entering the Group, Artifact and Package. By default, you can only create processors. If you need to create Input or Output components, select Activate IO. By doing this: Two new menu entries let you add datasets and datastores to your project, as they are required for input and output components. Input and Output components without dataset (itself containing a datastore) will not pass the validation step when building the components. Learn more about datasets and datastores in this document. An Input component and an Output component are automatically added to your project and ready to be configured. Components added to the project using Add A Component can now be processors, input or output components. A datastore represents the data needed by an input or output component to connect to a database. When building a component, the validateDataSet validation checks that each input or output (processor without output branch) component uses a dataset and that this dataset has a datastore. You can define one or several datastores if you have selected the Activate IO step. Select Datastore. The list of datastores opens. By default, a datastore is already open but not configured. You can configure it or create a new one using Add new Datastore. Specify the name of the datastore. Modify the default value to a meaningful name for your project. This name must be a valid Java name as it will represent the datastore class in your project. It is a good practice to start it with an uppercase letter. Edit the datastore configuration. Parameter names must be valid Java names. Use lower case as much as possible. A typical configuration includes connection details to a database: url username password. Save the datastore configuration. A dataset represents the data coming from or sent to a database and needed by input and output components to operate. The validateDataSet validation checks that each input or output (processor without output branch) component uses a dataset and that this dataset has a datastore. You can define one or several datasets if you have selected the Activate IO step. Select Dataset. The list of datasets opens. By default, a dataset is already open but not configured. You can configure it or create a new one using the Add new Dataset button. Specify the name of the dataset. Modify the default value to a meaningful name for your project. This name must be a valid Java name as it will represent the dataset class in your project. It is a good practice to start it with an uppercase letter. Edit the dataset configuration. Parameter names must be valid Java names. Use lower case as much as possible. A typical configuration includes details of the data to retrieve: Datastore to use (that contains the connection details to the database) table name data Save the dataset configuration. To create an input component, make sure you have selected Activate IO. When clicking Add A Component in the Starter, a new step allows you to define a new component in your project. The intent in this tutorial is to create an input component that connects to a MySQL database, executes a SQL query and gets the result. Choose the component type. Input in this case. Enter the component name. For example, MySQLInput. Click Configuration model. This button lets you specify the required configuration for the component. By default, a dataset is already specified. For each parameter that you need to add, click the (+) button on the right panel. Enter the parameter name and choose its type then click the tick button to save the changes. In this tutorial, to be able to execute a SQL query on the Input MySQL database, the configuration requires the following parameters:+ a dataset (which contains the datastore with the connection information) a timeout parameter. Closing the configuration panel on the right does not delete your configuration. However, refreshing the page resets the configuration. Specify whether the component issues a stream or not. In this tutorial, the MySQL input component created is an ordinary (non streaming) component. In this case, leave the Stream option disabled. Select the Record Type generated by the component. In this tutorial, select Generic because the component is designed to generate records in the default Record format. You can also select Custom to define a POJO that represents your records. Your input component is now defined. You can add another component or generate and download your project. When clicking Add A Component in the Starter, a new step allows you to define a new component in your project. The intent in this tutorial is to create a simple processor component that receives a record, logs it and returns it at it is. If you did not select Activate IO, all new components you add to the project are processors by default. If you selected Activate IO, you can choose the component type. In this case, to create a Processor component, you have to manually add at least one output. If required, choose the component type: Processor in this case. Enter the component name. For example, RecordLogger, as the processor created in this tutorial logs the records. Specify the Configuration Model of the component. In this tutorial, the component doesn’t need any specific configuration. Skip this step. Define the Input(s) of the component. For each input that you need to define, click Add Input. In this tutorial, only one input is needed to receive the record to log. Click the input name to access its configuration. You can change the name of the input and define its structure using a POJO. If you added several inputs, repeat this step for each one of them. The input in this tutorial is a generic record. Enable the Generic option and click Save. Define the Output(s) of the component. For each output that you need to define, click Add Output. The first output must be named MAIN. In this tutorial, only one generic output is needed to return the received record. Outputs can be configured the same way as inputs (see previous steps). You can define a reject output connection by naming it REJECT. This naming is used by Talend applications to automatically set the connection type to Reject. Your processor component is now defined. You can add another component or generate and download your project. To create an output component, make sure you have selected Activate IO. When clicking Add A Component in the Starter, a new step allows you to define a new component in your project. The intent in this tutorial is to create an output component that receives a record and inserts it into a MySQL database table. Output components are Processors without any output. In other words, the output is a processor that does not produce any records. Choose the component type. Output in this case. Enter the component name. For example, MySQLOutput. Click Configuration Model. This button lets you specify the required configuration for the component. By default, a dataset is already specified. For each parameter that you need to add, click the (+) button on the right panel. Enter the name and choose the type of the parameter, then click the tick button to save the changes. In this tutorial, to be able to insert a record in the output MySQL database, the configuration requires the following parameters:+ a dataset (which contains the datastore with the connection information) a timeout parameter. Closing the configuration panel on the right does not delete your configuration. However, refreshing the page resets the configuration. Define the Input(s) of the component. For each input that you need to define, click Add Input. In this tutorial, only one input is needed. Click the input name to access its configuration. You can change the name of the input and define its structure using a POJO. If you added several inputs, repeat this step for each one of them. The input in this tutorial is a generic record. Enable the Generic option and click Save. Do not create any output because the component does not produce any record. This is the only difference between an output an a processor component. Your output component is now defined. You can add another component or generate and download your project. Once your project is configured and all the components you need are created, you can generate and download the final project. In this tutorial, the project was configured and three components of different types (input, processor and output) have been defined. Click Finish on the left panel. You are redirected to a page that summarizes the project. On the left panel, you can also see all the components that you added to the project. Generate the project using one of the two options available: Download it locally as a ZIP file using the Download as ZIP button. Create a GitHub repository and push the project to it using the Create on Github button. In this tutorial, the project is downloaded to the local machine as a ZIP file. Once the package is available on your machine, you can compile it using the build tool selected when configuring the project. In the tutorial, Maven is the build tool selected for the project. In the project directory, execute the mvn package command. If you don’t have Maven installed on your machine, you can use the Maven wrapper provided in the generated project, by executing the ./mvnw package command. If you have created a Gradle project, you can compile it using the gradle build command or using the Gradle wrapper: ./gradlew build. The generated project code contains documentation that can guide and help you implementing the component logic. Import the project to your favorite IDE to start the implementation. The Component Kit Starter allows you to generate a component development project from an OpenAPI json descriptor. Open the Starter in the web browser of your choice. Enable the OpenAPI mode using the toggle in the header. Go to the API menu. Paste the OpenAPI json descriptor in the right part of the screen. All the described endpoints are detected. Unselect the endpoints that you do not want to use in the future components. By default, all detected endpoints are selected. Go to the Finish menu. Download the project. When exploring the project generated from an OpenAPI descriptor, you can notice the following elements: sources the API dataset an HTTP client for the API a connection folder containing the component configuration. By default, the configuration is only made of a simple datastore with a baseUrl parameter.
Talend Component scanning is based on plugins. To make sure that plugins can be developed in parallel and avoid conflicts, they need to be isolated (component or group of components in a single jar/plugin).
Multiple options are available:
Graph classloading: this option allows you to link the plugins and dependencies together dynamically in any direction. For example, the graph classloading can be illustrated by OSGi containers.
Tree classloading: a shared classloader inherited by plugin classloaders. However, plugin classloader classes are not seen by the shared classloader, nor by other plugins. For example, the tree classloading is commonly used by Servlet containers where plugins are web applications.
Flat classpath: listed for completeness but rejected by design because it doesn’t comply with this requirement.
In order to avoid much complexity added by this layer, Talend Component Kit relies on a tree classloading. The advantage is that you don’t need to define the relationship with other plugins/dependencies, because it is built-in.
Here is a representation of this solution:
The shared area contains Talend Component Kit API, which only contains by default the classes shared by the plugins.
Then, each plugin is loaded with its own classloader and dependencies.
This section explains the overall way to handle dependencies but the Talend Maven plugin provides a shortcut for that.
A plugin is a JAR file that was enriched with the list of its dependencies. By default, Talend Component Kit runtime is able to read the output of maven-dependency-plugin in TALEND-INF/dependencies.txt. You just need to make sure that your component defines the following plugin:
Once build, check the JAR file and look for the following lines:
What is important to see is the scope related to the artifacts:
The APIs (component-api and geronimo-annotation_1.3_spec) are provided because you can consider them to be there when executing (they come with the framework).
Your specific dependencies (awesome-project in the example above) are marked as compile: they are included as needed dependencies by the framework (note that using runtime works too).
the other dependencies are ignored. For example, test dependencies.
Even if a flat classpath deployment is possible, it is not recommended because it would then reduce the capabilities of the components.
The way the framework resolves dependencies is based on a local Maven repository layout. As a quick reminder, it looks like:
This is all the layout the framework uses. The logic converts t-uple {groupId, artifactId, version, type (jar)} to the path in the repository.
Talend Component Kit runtime has two ways to find an artifact:
From the file system based on a configured Maven 2 repository.
From a fat JAR (uber JAR) with a nested Maven repository under MAVEN-INF/repository.
The first option uses either ${user.home}/.m2/repository (default) or a specific path configured when creating a ComponentManager. The nested repository option needs some configuration during the packaging to ensure the repository is correctly created.
To create the nested MAVEN-INF/repository repository, you can use the nested-maven-repository extension:
Plugins are usually programmatically registered. If you want to make some of them automatically available, you need to generate a TALEND-INF/plugins.properties file that maps a plugin name to coordinates found with the Maven mechanism described above.
You can enrich maven-shade-plugin to do it:
Here is a final job/application bundle based on maven-shade-plugin:
The configuration unrelated to transformers depends on your application.
ContainerDependenciesTransformer embeds a Maven repository and PluginTransformer to create a file that lists (one per line) artifacts (representing plugins).
Both transformers share most of their configuration:
session: must be set to ${session}. This is used to retrieve dependencies.
scope: a comma-separated list of scopes to include in the artifact filtering (note that the default will rely on provided but you can replace it by compile, runtime, runtime+compile, runtime+system or test).
include: a comma-separated list of artifacts to include in the artifact filtering.
exclude: a comma-separated list of artifacts to exclude in the artifact filtering.
userArtifacts: set of artifacts to include (groupId, artifactId, version, type - optional, file - optional for plugin transformer, scope - optional) which can be forced inline. This parameter is mainly useful for PluginTransformer.
includeTransitiveDependencies: should transitive dependencies of the components be included. Set to true by default. It is active for userArtifacts.
includeProjectComponentDependencies: should component project dependencies be included. Set to false by default. It is not needed when a job project uses isolation for components.
With the component tooling, it is recommended to keep default locations. Also if you need to use project dependencies, you can need to refactor your project structure to ensure component isolation. Talend Component Kit lets you handle that part but the recommended practice is to use userArtifacts for the components instead of project
singer-java module provide a Java API to write a custom singer. To import it, add the following dependency: Then you have access to the Singer class and its companion which provides the primitives to output properly the data: To build schema, keys, bookmarks, json and state which are all either jsonObject or jsonArray you can rely on jsonBuilderFactory which can be instantiated with this snippet: component-kitap is the name of the integration between singer-java and Talend Component Kit. It enables to run native Talend Component Kit components through a tap. The module relies on a proper setup of the component and classpath: Classpath is well setup - composed of component-kitap with a default SLF4J binding configured to log only errors on stderr. For convenience, you can use the all in one bundle provided by the module: org.talend.sdk.component:component-kitapp:${kit.version}:fatjar. Component is "deployed" - i.e. its maven repository is set provisionned with its dependencies. If you downloaded a component as a .car then you can run the car to do it. You can enforce the maven location through the system property talend.component.manager.m2.repository. Regarding SLF4J, the fatjar uses slf4j-standard of the framework which enables to set the logged level to error through a system property: -Dorg.talend.sdk.component.slf4j.StdLogger.level=err. To automatically register a component plugin/family you must add to the classpath a TALEND-INF/plugins.properties: The file only need to contain the registration of the plugin jar: Therefore the launch command can look like: Alternatively you can use org.talend.sdk.component.singer.kitap.Carpates main to launch the application, it differs from Kitap in the sense it takes a .car as option and avoids to pre-build the m2 repository: Here is an example with a real component: The config.json must respect this format: in some environment, such a json is not desirable, it is possible to put component_config attribute as a string containing the full json (escaped indeed) too.
component-runtime-junit is a test library that allows you to validate simple logic based on the Talend Component Kit tooling.
To import it, add the following dependency to your project:
This dependency also provides mocked components that you can use with your own component to create tests.
The mocked components are provided under the test family:
emitter : a mock of an input component
collector : a mock of an output component
The collector is "per thread" by default. If you are executing a Beam (or concurrent) job, it will not work. To switch to a JVM wide storage, set the talend.component.junit.handler.state system property to static (default being thread). You can do it in a maven-surefire-plugin execution.
You can define a standard JUnit test and use the SimpleComponentRule rule:
The rule can also be defined as a @ClassRule to start it once per class and not per test as with @Rule.
To go further, you can add the ServiceInjectionRule rule, which allows to inject all the component family services into the test class by marking test class fields with @Service:
The JUnit 5 integration is very similar to JUnit 4, except that it uses the JUnit 5 extension mechanism.
The entry point is the @WithComponents annotation that you add to your test class, and which takes the component package you want to test. You can use @Injected to inject an instance of ComponentsHandler - which exposes the same utilities than the JUnit 4 rule - in a test class field :
If you use JUnit 5 for the first time, keep in mind that the imports changed and that you need to use org.junit.jupiter.api.Test instead of org.junit.Test. Some IDE versions and surefire versions can also require you to install either a plugin or a specific configuration.
As for JUnit 4, you can go further by injecting test class fields marked with @Service, but there is no additional extension to specify in this case:
Streaming components have the issue to not stop by design. The Job DSL exposes two properties to help with that issue:
streaming.maxRecords: enables to request a maximum number of records
streaming.maxDurationMs: enables to request a maximum duration for the execution of the input
You can set them as properties on the job:
Using the test://collector component as shown in the previous sample stores all records emitted by the chain (typically your source) in memory. You can then access them using theSimpleComponentRule.getCollectedData(type).
Note that this method filters by type. If you don’t need any specific type, you can use Object.class.
The input mocking is symmetric to the output. In this case, you provide the data you want to inject:
The component configuration is a POJO (using @Option on fields) and the runtime configuration (ExecutionChainBuilder) uses a Map
This tutorial is the continuation of Talend Input component for Hazelcast tutorial. We will not walk through the project creation again, So please start from there before taking this one. This tutorial shows how to create a complete working output component for Hazelcast As seen before, in Hazelcast there is multiple data source type. You can find queues, topics, cache, maps… In this tutorials we will stick with the Map dataset and all what we will see here is applicable to the other types. Let’s assume that our Hazelcast output component will be responsible of inserting data into a distributed Map. For that, we will need to know which attribute from the incoming data is to be used as a key in the map. The value will be the hole record encoded into a json format. Bu that in mind, we can design our output configuration as: the same Datastore and Dataset from the input component and an additional configuration that will define the key attribute. Let’s create our Output configuration class. Let’s add the i18n properties of our configuration into the Messages.properties file The skeleton of the output component looks as follows: @Version annotation indicates the version of the component. It is used to migrate the component configuration if needed. @Icon annotation indicates the icon of the component. Here, the icon is a custom icon that needs to be bundled in the component JAR under resources/icons. @Processor annotation indicates that this class is the processor (output) and defines the name of the component. constructor of the processor is responsible for injecting the component configuration and services. Configuration parameters are annotated with @Option. The other parameters are considered as services and are injected by the component framework. Services can be local (class annotated with @Service) or provided by the component framework. The method annotated with @PostConstruct is executed once by instance and can be used for initialization. The method annotated with @PreDestroy is used to clean resources at the end of the execution of the output. Data is passed to the method annotated with @ElementListener. That method is responsible for handling the data output. You can define all the related logic in this method. If you need to bulk write the updates accordingly to groups, see Processors and batch processing. Now, we will need to add the display name of the Output to the i18n resources file Messages.properties Let’s implement all of those methods We will create the outpu contructor to inject the component configuration and some additional local and built in services. Built in services are services provided by TCK. Here we find: configuration is the component configuration class hazelcastService is the service that we have implemented in the input component tutorial. it will be responsible of creating a hazelcast client instance. jsonb is a built in service provided by tck to handle json object serialization and deserialization. We will use it to convert the incoming record to json format before inseting them into the map. Nothing to do in the post construct method. but we could for example initialize a hazle cast instance there. but we will do it in a lazy way on the first call in the @ElementListener method Shut down the Hazelcast client instance and thus free the Hazelcast map reference. We get the key attribute from the incoming record and then convert the hole record to a json string. Then we insert the key/value into the hazelcast map. Let’s create a unit test for our output component. The idea will be to create a job that will insert the data using this output implementation. So, let’s create out test class. Here we start by creating a hazelcast test instance, and we initialize the map. we also shutdown the instance after all the test are executed. Now let’s create our output test. Here we start preparing the emitter test component provided bt TCK that we use in our test job to generate random data for our output. Then, we use the output component to fill the hazelcast map. By the end we test that the map contains the exact amount of data inserted by the job. Run the test and check that it’s working. Congratulation you just finished your output component.
This tutorial shows how to create components that consume a REST API. The component developed as example in this tutorial is an input component that provides a search functionality for Zendesk using its Search API. Lombok is used to avoid writing getter, setter and constructor methods. You can generate a project using the Talend Components Kit starter, as described in this tutorial. The input component relies on Zendesk Search API and requires an HTTP client to consume it. The Zendesk Search API takes the following parameters on the /api/v2/search.json endpoint. query : The search query. sort_by : The sorting type of the query result. Possible values are updated_at, created_at, priority, status, ticket_type, or relevance. It defaults to relevance. sort_order: The sorting order of the query result. Possible values are asc (for ascending) or desc (for descending). It defaults to desc. Talend Component Kit provides a built-in service to create an easy-to-use HTTP client in a declarative manner, using Java annotations. No additional implementation is needed for the interface, as it is provided by the component framework, according to what is defined above. This HTTP client can be injected into a mapper or a processor to perform HTTP requests. This example uses the basic authentication that supported by the API. The first step is to set up the configuration for the basic authentication. To be able to consume the Search API, the Zendesk instance URL, the username and the password are needed. The data store is now configured. It provides a basic authentication token. Once the data store is configured, you can define the dataset by configuring the search query. It is that query that defines the records processed by the input component. Your component is configured. You can now create the component logic. Mappers defined with this tutorial don’t implement the split part because HTTP calls are not split on many workers in this case. Once the component logic implemented, you can create the source in charge of performing the HTTP request to the search API and converting the result to jsonObject records. You now have created a simple Talend component that consumes a REST API. To learn how to test this component, refer to this tutorial.
The component API is declarative (through annotations) to ensure it is: Evolutive. It can get new features without breaking old code. As static as possible. Because it is fully declarative, any new API can be added iteratively without requiring any change to existing components. For example, in the case of Beam potential evolution: would not be affected by the addition of the new Timer API, which can be used as follows: The intent of the framework is to be able to fit in a Java UI as well as in a web UI. It must be understood as colocalized and remote UI. The goal is to move as much as possible the logic to the UI side for UI-related actions. For example, validating a pattern, a size, and so on, should be done on the client side rather than on the server side. Being static encourages this practice. The other goal of being static in the API definition is to ensure that the model will not be mutated at runtime and that all the auditing and modeling can be done before, at the design phase. Being static also ensures that the development can be validated as much as possible through build tools. This does not replace the requirement to test the components but helps developers to maintain components with automated tools. Refer to this document. The components must be able to execute even if they have conflicting libraries. For that purpose, classloaders must be isolated. A component defines its dependencies based on a Maven format and is always bound to its own classloader. The definition payload is as flat as possible and strongly typed to ensure it can be manipulated by consumers. This way, consumers can add or remove fields with simple mapping rules, without any abstract tree handling. The execution (runtime) configuration is the concatenation of framework metadata (only the version) and a key/value model of the instance of the configuration based on the definition properties paths for the keys. It enables consumers to maintain and work with the keys/values according to their need. The framework not being responsible for any persistence, it is very important to make sure that consumers can handle it from end to end, with the ability to search for values (update a machine, update a port and so on) and keys (for example, a new encryption rule on key certificate). Talend Component Kit is a metamodel provider (to build forms) and a runtime execution platform. It takes a configuration instance and uses it volatilely to execute a component logic. This implies it cannot own the data nor define the contract it has for these two endpoints and must let the consumers handle the data lifecycle (creation, encryption, deletion, and so on). A new mime type called talend/stream is introduced to define a streaming format. It matches a json object per line: Icons (@Icon) are based on a fixed set. Custom icons can be used but their display cannot be guaranteed. Components can be used in any environment and require a consistent look that cannot be guaranteed outside of the UI itself. Defining keys only is the best way to communicate this information. Once you know exactly how you will deploy your component in the Studio, then you can use `@Icon(value = CUSTOM, custom = "…") to use a custom icon file.
Testing code that consumes REST APIs can sometimes present many constraints: API rate limit, authentication token and password sharing, API availability, sandbox expiration, API costs, and so on. As a developer, it becomes critical to avoid those constraints and to be able to easily mock the API response. The component framework provides an API simulation tool that makes it easy to write unit tests. This tutorial shows how to use this tool in unit tests. As a starting point, the tutorial uses the component that consumes Zendesk Search API and that was created in a previous tutorial. The goal is to add unit tests for it. For this tutorial, four tickets that have the open status have been added to the Zendesk test instance used in the tests. To learn more about the testing methodology used in this tutorial, refer to Component JUnit testing. Create a unit test that performs a real HTTP request to the Zendesk Search API instance. You can learn how to create a simple unit test in this tutorial. the authentication configuration using Zendesk instance URL and credentials. the search query configuration to get all the open ticket, ordered by creation date and sorted in descending order. The test is now complete and working. It performs a real HTTP request to the Zendesk instance. As an alternative, you can use mock results to avoid performing HTTP requests every time on the development environment. The real HTTP requests would, for example, only be performed on an integration environment. To transform the unit test into a mocked test that uses a mocked response of the Zendesk Search API: Add the two following JUnit rules provided by the component framework. JUnit4HttpApi: This rule starts a simulation server that acts as a proxy and catches all the HTTP requests performed in the tests. This simulation server has two modes : capture : This mode forwards the captured HTTP request to the real server and captures the response. simulation : this mode returns a mocked response from the responses already captured. This rule needs to be added as a class rule. JUnit4HttpApi: This rule has a reference to the first rule. Its role is to configure the simulation server for every unit test. It passes the context of the running test to the simulation server. This rule needs to be added as a simple (method) rule. Example to run in a simulation mode: Make the test run in capture mode to catch the real API responses that can be used later in the simulated mode. To do that, set a new talend.junit.http.capture environment variable to true. This tells the simulation server to run in a capture mode. The captured response is saved in the resources/talend.testing.http package in a json format, then reused to perform the API simulation.
Several data generators exist if you want to populate objects with a semantic that is more evolved than a plain random string like commons-lang3: github.com/Codearte/jfairy github.com/DiUS/java-faker github.com/andygibson/datafactory etc. Even more advanced, the following generators allow to directly bind generic data on a model. However, data quality is not always optimal: github.com/devopsfolks/podam github.com/benas/random-beans etc. There are two main kinds of implementation: Implementations using a pattern and random generated data. Implementations using a set of precomputed data extrapolated to create new values. Check your use case to know which one fits best. An alternative to data generation can be to import real data and use Talend Studio to sanitize the data, by removing sensitive information and replacing it with generated or anonymized data. Then you just need to inject that file into the system. If you are using JUnit 5, you can have a look at glytching.github.io/junit-extensions/randomBeans.
A Processor is a component that converts incoming data to a different model.
A processor must have a method decorated with @ElementListener taking an incoming data and returning the processed data:
Processors must be Serializable because they are distributed components.
If you just need to access data on a map-based ruleset, you can use Record or jsonObject as parameter type. From there, Talend Component Kit wraps the data to allow you to access it as a map. The parameter type is not enforced. This means that if you know you will get a SuperCustomDto, then you can use it as parameter type. But for generic components that are reusable in any chain, it is highly encouraged to use Record until you have an evaluation language-based processor that has its own way to access components.
For example:
A processor also supports @BeforeGroup and @AfterGroup methods, which must not have any parameter and return void values. Any other result would be ignored. These methods are used by the runtime to mark a chunk of the data in a way which is estimated good for the execution flow size.
Because the size is estimated, the size of a group can vary. It is even possible to have groups of size 1.
It is recommended to batch records, for performance reasons:
You can optimize the data batch processing by using the maxBatchSize parameter. This parameter is automatically implemented on the component when it is deployed to a Talend application. Only the logic needs to be implemented. You can however customize its value setting in your LocalConfiguration the property _maxBatchSize.value - for the family - or ${component simple class name}._maxBatchSize.value - for a particular component, otherwise its default will be 1000. If you replace value by active, you can also configure if this feature is enabled or not. This is useful when you don’t want to use it at all. Learn how to implement chunking/bulking in this document.
In some cases, you may need to split the output of a processor in two or more connections. A common example is to have "main" and "reject" output connections where part of the incoming data are passed to a specific bucket and processed later.
Talend Component Kit supports two types of output connections: Flow and Reject.
Flow is the main and standard output connection.
The Reject connection handles records rejected during the processing. A component can only have one reject connection, if any. Its name must be REJECT to be processed correctly in Talend applications.
You can also define the different output connections of your component in the Starter.
To define an output connection, you can use @Output as replacement of the returned value in the @ElementListener:
Alternatively, you can pass a string that represents the new branch:
Having multiple inputs is similar to having multiple outputs, except that an OutputEmitter wrapper is not needed:
@Input takes the input name as parameter. If no name is set, it defaults to the "main (default)" input branch. It is recommended to use the default branch when possible and to avoid naming branches according to the component semantic.
Batch processing refers to the way execution environments process batches of data handled by a component using a grouping mechanism.
By default, the execution environment of a component automatically decides how to process groups of records and estimates an optimal group size depending on the system capacity. With this default behavior, the size of each group could sometimes be optimized for the system to handle the load more effectively or to match business requirements.
For example, real-time or near real-time processing needs often imply processing smaller batches of data, but more often. On the other hand, a one-time processing without business contraints is more effectively handled with a batch size based on the system capacity.
Final users of a component developed with the Talend Component Kit that integrates the batch processing logic described in this document can override this automatic size. To do that, a maxBatchSize option is available in the component settings and allows to set the maximum size of each group of data to process.
A component processes batch data as follows:
Case 1 - No maxBatchSize is specified in the component configuration. The execution environment estimates a group size of 4. Records are processed by groups of 4.
Case 2 - The runtime estimates a group size of 4 but a maxBatchSize of 3 is specified in the component configuration. The system adapts the group size to 3. Records are processed by groups of 3.
Batch processing relies on the sequence of three methods: @BeforeGroup, @ElementListener, @AfterGroup, that you can customize to your needs as a component Developer.
The group size automatic estimation logic is automatically implemented when a component is deployed to a Talend application.
Each group is processed as follows until there is no record left:
The @BeforeGroup method resets a record buffer at the beginning of each group.
The records of the group are assessed one by one and placed in the buffer as follows: The @ElementListener method tests if the buffer size is greater or equal to the defined maxBatchSize. If it is, the records are processed. If not, then the current record is buffered.
The previous step happens for all records of the group. Then the @AfterGroup method tests if the buffer is empty.
You can define the following logic in the processor configuration:
You can also use the condensed syntax for this kind of processor:
When writing tests for components, you can force the maxBatchSize parameter value by setting it with the following syntax:
Processors and output components are the components in charge of reading, processing and transforming data in a Talend job, as well as passing it to its required destination.
Before implementing the component logic and defining its layout and configurable fields, make sure you have specified its basic metadata, as detailed in this document.
A Processor is a component that converts incoming data to a different model.
A processor must have a method decorated with @ElementListener taking an incoming data and returning the processed data:
Processors must be Serializable because they are distributed components.
If you just need to access data on a map-based ruleset, you can use Record or jsonObject as parameter type. From there, Talend Component Kit wraps the data to allow you to access it as a map. The parameter type is not enforced. This means that if you know you will get a SuperCustomDto, then you can use it as parameter type. But for generic components that are reusable in any chain, it is highly encouraged to use Record until you have an evaluation language-based processor that has its own way to access components.
For example:
A processor also supports @BeforeGroup and @AfterGroup methods, which must not have any parameter and return void values. Any other result would be ignored. These methods are used by the runtime to mark a chunk of the data in a way which is estimated good for the execution flow size.
Because the size is estimated, the size of a group can vary. It is even possible to have groups of size 1.
It is recommended to batch records, for performance reasons:
You can optimize the data batch processing by using the maxBatchSize parameter. This parameter is automatically implemented on the component when it is deployed to a Talend application. Only the logic needs to be implemented. You can however customize its value setting in your LocalConfiguration the property _maxBatchSize.value - for the family - or ${component simple class name}._maxBatchSize.value - for a particular component, otherwise its default will be 1000. If you replace value by active, you can also configure if this feature is enabled or not. This is useful when you don’t want to use it at all. Learn how to implement chunking/bulking in this document.
In some cases, you may need to split the output of a processor in two or more connections. A common example is to have "main" and "reject" output connections where part of the incoming data are passed to a specific bucket and processed later.
Talend Component Kit supports two types of output connections: Flow and Reject.
Flow is the main and standard output connection.
The Reject connection handles records rejected during the processing. A component can only have one reject connection, if any. Its name must be REJECT to be processed correctly in Talend applications.
You can also define the different output connections of your component in the Starter.
To define an output connection, you can use @Output as replacement of the returned value in the @ElementListener:
Alternatively, you can pass a string that represents the new branch:
Having multiple inputs is similar to having multiple outputs, except that an OutputEmitter wrapper is not needed:
@Input takes the input name as parameter. If no name is set, it defaults to the "main (default)" input branch. It is recommended to use the default branch when possible and to avoid naming branches according to the component semantic.
Batch processing refers to the way execution environments process batches of data handled by a component using a grouping mechanism.
By default, the execution environment of a component automatically decides how to process groups of records and estimates an optimal group size depending on the system capacity. With this default behavior, the size of each group could sometimes be optimized for the system to handle the load more effectively or to match business requirements.
For example, real-time or near real-time processing needs often imply processing smaller batches of data, but more often. On the other hand, a one-time processing without business contraints is more effectively handled with a batch size based on the system capacity.
Final users of a component developed with the Talend Component Kit that integrates the batch processing logic described in this document can override this automatic size. To do that, a maxBatchSize option is available in the component settings and allows to set the maximum size of each group of data to process.
A component processes batch data as follows:
Case 1 - No maxBatchSize is specified in the component configuration. The execution environment estimates a group size of 4. Records are processed by groups of 4.
Case 2 - The runtime estimates a group size of 4 but a maxBatchSize of 3 is specified in the component configuration. The system adapts the group size to 3. Records are processed by groups of 3.
Batch processing relies on the sequence of three methods: @BeforeGroup, @ElementListener, @AfterGroup, that you can customize to your needs as a component Developer.
The group size automatic estimation logic is automatically implemented when a component is deployed to a Talend application.
Each group is processed as follows until there is no record left:
The @BeforeGroup method resets a record buffer at the beginning of each group.
The records of the group are assessed one by one and placed in the buffer as follows: The @ElementListener method tests if the buffer size is greater or equal to the defined maxBatchSize. If it is, the records are processed. If not, then the current record is buffered.
The previous step happens for all records of the group. Then the @AfterGroup method tests if the buffer is empty.
You can define the following logic in the processor configuration:
You can also use the condensed syntax for this kind of processor:
When writing tests for components, you can force the maxBatchSize parameter value by setting it with the following syntax:
OSS addict I'm involved in several ASF projects (http://home.apache.org/committer-index.html#rmannibucau) and Yupiik (https://www.yupiik.io/projects.html). Blog: https://rmannibucau.metawerx.net Software engineer @Talend. Components team member. Blog: undx.github.io Technical Writer Frontend Architect QA Automation @ Talend Nantes R&D Senior principal product security engineer at Qlik, security contributor at @apache. Blog: http://coheigea.blogspot.com/ Frontend Architect. This is my Talend account. You can check out @jsomsanith for my personal account Blog: timeline.antoinenicolas.com Committer and PMC member of Apache Beam and Apache Avro. Free education and Open Source enthusiast. Distributed Systems practitioner (victim?) Blog: https://ismaelmejia.com/ Templar I'm a serial tooler. Blog: https://www.linkedin.com/in/zoltantakacsdev/ Focused on Big Data. Open Source contributor. I'm an Apache Beam and Flink committer and Beam PMC member. I'm also an Apache Software Foundation member Blog: https://echauchot.blogspot.com/ Principal Cloud Software Architect Born in 2008 I joined Talend with my master in 2022, I am now the official ci-runner for the connectors team Product Manager, Information Architect Principal Security Engineer Blog: www.talend.com 573PH4N3 D3M15 K3RM480N Drums, Java, Rock'n'Roll Senior Software engineer at @komodohealth. Ph.D. in large-scale storage systems. Previous competitive programmer.
You can integrate and start using components developed using Talend Component Kit in Talend applications very easily. As both the development framework and Talend applications evolve over time, you need to ensure compatibility between the components you develop and the versions of Talend applications that you are targeting, by making sure that you use the right version of Talend Component Kit. The version of Talend Component Kit you need to use to develop new components depends on the versions of the Talend applications in which these components will be integrated. Talend product Talend Component Kit version Talend Studio 8.8.8 (aka master) latest release Talend Studio 8.0.1 latest release QA approved Talend Studio 7.3.1 Framework until 1.38.x Talend Studio 7.2.1 Framework until 1.1.10 Talend Studio 7.1.1 Framework until 1.1.1 Talend Studio 7.0.1 Framework until 0.0.5 Talend Cloud latest release QA and cloud teams approved More recent versions of Talend Component Kit contain many fixes, improvements and features that help developing your components. However, they can cause some compatibility issues when deploying these components to older/different versions of Talend Studio and Talend Cloud. Choose the version of Talend Component Kit that best fits your needs. Creating a project using the Component Kit Starter always uses the latest release of Talend Component Kit. However, you can manually change the version of Talend Component Kit directly in the generated project. Go to your IDE and access the project root .pom file. Look for the org.talend.sdk.component dependency nodes. Replace the version in the relevant nodes with the version that you need to use for your project. You can use a Snapshot of the version under development using the -SNAPSHOT version and Sonatype snapshot repository.
The component configuration is defined in the
Talend Component Kit provides a migration mechanism between two versions of a component to let you ensure backward compatibility. For example, a new version of a component may have some new options that need to be remapped, set with a default value in the older versions, or disabled. This tutorial shows how to create a migration handler for a component that needs to be upgraded from a version 1 to a version 2. The upgrade to the newer version includes adding new options to the component. This tutorial assumes that you know the basics about component development and are familiar with component project generation and implementation. To follow this tutorial, you need: Java 8 A Talend component development environment using Talend Component Kit. Refer to this document. Have generated a project containing a simple processor component using the Talend Component Kit Starter. First, create a simple processor component configured as follows: Create a simple configuration class that represents a basic authentication and that can be used in any component requiring this kind of authentication. Create a simple output component that uses the configuration defined earlier. The component configuration is injected into the component constructor. The version of the configuration class corresponds to the component version. By configuring these two classes, the first version of the component is ready to use a simple authentication mechanism. Now, assuming that the component needs to support a new authentication mode following a new requirement, the next steps are: Creating a version 2 of the component that supports the new authentication mode. Handling migration from the first version to the new version. The second version of the component needs to support a new authentication method and let the user choose the authentication mode he wants to use using a dropdown list. Add an Oauth2 authentication mode to the component in addition to the basic mode. For example: The options of the new authentication mode are now defined. Wrap the configuration created above in a global configuration with the basic authentication mode and add an enumeration to let the user choose the mode to use. For example, create an AuthenticationConfiguration class as follows: Using the @ActiveIf annotation allows to activate the authentication type according to the selected authentication mode. Edit the component to use the new configuration that supports an additional authentication mode. Also upgrade the component version from 1 to 2 as its configuration has changed. The component now supports two authentication modes in its version 2. Once the new version is ready, you can implement the migration handler that will take care of adapting the old configuration to the new one. What can happen if an old configuration is passed to the new component version? It simply fails, as the version 2 does not recognize the old version anymore. For that reason, a migration handler that adapts the old configuration to the new one is required. It can be achieved by defining a migration handler class in the @Version annotation of the component class. An old configuration may already be persisted by an application that integrates the version 1 of the component (Studio or web application). Add a migration handler class to the component version. Create the migration handler class MyOutputMigrationHandler. the incoming version, which is the version of the configuration that we are migrating from a map (key, value) of the configuration, where the key is the configuration path and the value is the value of the configuration. You need to be familiar with the component configuration path construction to better understand this part. Refer to Defining component layout and configuration. As a reminder, the following changes were made since the version 1 of the component: The configuration BasicAuth from the version 1 is not the root configuration anymore, as it is under AuthenticationConfiguration. AuthenticationConfiguration is the new root configuration. The component supports a new authentication mode (Oauth2) which is the default mode in the version 2 of the component. To migrate the old component version to the new version and to keep backward compatibility, you need to: Remap the old configuration to the new one. Give the adequate default values to some options. In the case of this scenario, it means making all configurations based on the version 1 of the component have the authenticationMode set to basic by default and remapping the old basic authentication configuration to the new one. if a configuration has been renamed between 2 component versions, you can get the old configuration option from the configuration map by using its old path and set its value using its new path. You can now upgrade your component without losing backward compatibility.