Search results for studio-integration

Version compatibility  Learn which version of Talend Component Kit you can use for your components to be compatible with the right version of your Talend applications.   versions Studio studio-integration Cloud compatibility

You can integrate and start using components developed using Talend Component Kit in Talend applications very easily. As both the development framework and Talend applications evolve over time, you need to ensure compatibility between the components you develop and the versions of Talend applications that you are targeting, by making sure that you use the right version of Talend Component Kit. The version of Talend Component Kit you need to use to develop new components depends on the versions of the Talend applications in which these components will be integrated. Talend product Talend Component Kit version Talend Studio 8.8.8 (aka master) latest release Talend Studio 8.0.1 latest release QA approved Talend Studio 7.3.1 Framework until 1.38.x Talend Studio 7.2.1 Framework until 1.1.10 Talend Studio 7.1.1 Framework until 1.1.1 Talend Studio 7.0.1 Framework until 0.0.5 Talend Cloud latest release QA and cloud teams approved More recent versions of Talend Component Kit contain many fixes, improvements and features that help developing your components. However, they can cause some compatibility issues when deploying these components to older/different versions of Talend Studio and Talend Cloud. Choose the version of Talend Component Kit that best fits your needs. Creating a project using the Component Kit Starter always uses the latest release of Talend Component Kit. However, you can manually change the version of Talend Component Kit directly in the generated project. Go to your IDE and access the project root .pom file. Look for the org.talend.sdk.component dependency nodes. Replace the version in the relevant nodes with the version that you need to use for your project. You can use a Snapshot of the version under development using the -SNAPSHOT version and Sonatype snapshot repository.

Creating your first component  Create your first component using Talend Component Kit and integrate it to Talend Open Studio to build a job   first start Studio studio-integration integration palette

This tutorial walks you through the most common iteration steps to create a component with Talend Component Kit and to deploy it to Talend Open Studio. The component created in this tutorial is a simple processor that reads data coming from the previous component in a job or pipeline and displays it in the console logs of the application, along with an additional information entered by the final user. The component designed in this tutorial is a processor and does not require nor show any datastore and dataset configuration. Datasets and datastores are required only for input and output components. To get your development environment ready and be able to follow this tutorial: Download and install a Java JDK 1.8 or greater. Download and install Talend Open Studio. For example, from Sourceforge. Download and install IntelliJ. Download the Talend Component Kit plugin for IntelliJ. The detailed installation steps for the plugin are available in this document. The first step in this tutorial is to generate a component skeleton using the Starter embedded in the Talend Component Kit plugin for IntelliJ. Start IntelliJ and create a new project. In the available options, you should see Talend Component. Make sure that a Project SDK is selected. Then, select Talend Component and click Next. The Talend Component Kit Starter opens. Enter the component and project metadata. Change the default values, for example as presented in the screenshot below: The Component Family and the Category will be used later in Talend Open Studio to find the new component. Project metadata is mostly used to identify the project structure. A common practice is to replace 'company' in the default value by a value of your own, like your domain name. Once the metadata is filled, select Add a component. A new screen is displayed in the Talend Component Kit Starter that lets you define the generic configuration of the component. By default, new components are processors. Enter a valid Java name for the component. For example, Logger. Select Configuration Model and add a string type field named level. This input field will be used in the component configuration for final users to enter additional information to display in the logs. In the Input(s) / Output(s) section, click the default MAIN input branch to access its detail, and make sure that the record model is set to Generic. Leave the Name of the branch with its default MAIN value. Repeat the same step for the default MAIN output branch. Because the component is a processor, it has an output branch by default. A processor without any output branch is considered an output component. You can create output components when the Activate IO option is selected. Click Next and check the name and location of the project, then click Finish to generate the project in the IDE. At this point, your component is technically already ready to be compiled and deployed to Talend Open Studio. But first, take a look at the generated project: Two classes based on the name and type of component defined in the Talend Component Kit Starter have been generated: LoggerProcessor is where the component logic is defined LoggerProcessorConfiguration is where the component layout and configurable fields are defined, including the level string field that was defined earlier in the configuration model of the component. The package-info.java file contains the component metadata defined in the Talend Component Kit Starter, such as family and category. You can notice as well that the elements in the tree structure are named after the project metadata defined in the Talend Component Kit Starter. These files are the starting point if you later need to edit the configuration, logic, and metadata of the component. There is more that you can do and configure with the Talend Component Kit Starter. This tutorial covers only the basics. You can find more information in this document. Without modifying the component code generated from the Starter, you can compile the project and deploy the component to a local instance of Talend Open Studio. The logic of the component is not yet implemented at that stage. Only the configurable part specified in the Starter will be visible. This step is useful to confirm that the basic configuration of the component renders correctly. Before starting to run any command, make sure that Talend Open Studio is not running. From the component project in IntelliJ, open a Terminal and make sure that the selected directory is the root of the project. All commands shown in this tutorial are performed from this location. Compile the project by running the following command: mvnw clean install. The mvnw command refers to the Maven wrapper that is embedded in Talend Component Kit. It allows to use the right version of Maven for your project without having to install it manually beforehand. An equivalent wrapper is available for Gradle. Once the command is executed and you see BUILD SUCCESS in the terminal, deploy the component to your local instance of Talend Open Studio using the following command: mvnw talend-component:deploy-in-studio -Dtalend.component.studioHome="". Replace the path with your own value. If the path contains spaces (for example, Program Files), enclose it with double quotes. Make sure the build is successful. Open Talend Open Studio and create a new Job: Find the new component by looking for the family and category specified in the Talend Component Kit Starter. You can add it to your job and open its settings. Notice that the level field specified in the configuration model of the component in the Talend Component Kit Starter is present. At this point, the new component is available in Talend Open Studio, and its configurable part is already set. But the component logic is still to be defined. You can now edit the component to implement its logic: reading the data coming through the input branch to display that data in the execution logs of the job. The value of the level field that final users can fill also needs to be changed to uppercase and displayed in the logs. Save the job created earlier and close Talend Open Studio. Go back to the component development project in IntelliJ and open the LoggerProcessor class. This is the class where the component logic can be defined. Look for the @ElementListener method. It is already present and references the default input branch that was defined in the Talend Component Kit Starter, but it is not complete yet. To be able to log the data in input to the console, add the following lines: The @ElementListener method now looks as follows: Open a Terminal again to compile the project and deploy the component again. To do that, run successively the two following commands: mvnw clean install `mvnw talend-component:deploy-in-studio -Dtalend.component.studioHome="" The update of the component logic should now be deployed. After restarting Talend Open Studio, you will be ready to build a job and use the component for the first time. To learn the different possibilities and methods available to develop more complex logics, refer to this document. If you want to avoid having to close and re-open Talend Open Studio every time you need to make an edit, you can enable the developer mode, as explained in this document. As the component is now ready to be used, it is time to create a job and check that it behaves as intended. Open Talend Open Studio again and go to the job created earlier. The new component is still there. Add a tRowGenerator component and connect it to the logger. Double-click the tRowGenerator to specify the data to generate: Add a first column named firstName and select the TalendDataGenerator.getFirstName() function. Add a second column named 'lastName' and select the TalendDataGenerator.getLastName() function. Set the Number of Rows for RowGenerator to 10. Validate the tRowGenerator configuration. Open the TutorialFamilyLogger component and set the level field to info. Go to the Run tab of the job and run the job. The job is executed. You can observe in the console that each of the 10 generated rows is logged, and that the info value entered in the logger is also displayed with each record, in uppercase.

Integrating components into Talend Studio  Get an overview of how to integrate your components created using Talend Component Kit to Talend Studio   integration deployment open studio studio studio-integration

To be able to see and use your newly developed components, you need to integrate them to the right application. Currently, you can deploy your components to Talend Studio as part of your development process to iterate on them: Iterating on component development with Talend Studio You can also share your components externally and install them using a component archive (.car) file. Sharing and installing components in Talend Studio Check the versions of the framework that are compatible with your version of Talend Studio in this document. If you were used to create custom components with the Javajet framework and want to get to know the new approach and main differences of the Component Kit framework, refer to this document.

From Javajet to Talend Component Kit  The Javajet framework is being replaced by the new Talend Component Kit. Learn the main differences and the new approach introduced with this framework.   javajet studio studio-integration learning getting started principles

From the version 7.0 of Talend Studio, Talend Component Kit becomes the recommended framework to use to develop components. This framework is being introduced to ensure that newly developed components can be deployed and executed both in on-premise/local and cloud/big data environments. From that new approach comes the need to provide a complete yet unique and compatible way of developing components. With the Component Kit, custom components are entirely implemented in Java. To help you get started with a new custom component development project, a Starter is available. Using it, you will be able to generate the skeleton of your project. By importing this skeleton in a development tool, you can then implement the components layout and execution logic in Java. With the previous Javajet framework, metadata, widgets and configurable parts of a custom component were specified in XML. With the Component Kit, they are now defined in the Configuration (for example, LoggerProcessorConfiguration) Java class of your development project. Note that most of this configuration is transparent if you specified the Configuration Model of your components right before generating the project from the Starter. Any undocumented feature or option is considered not supported by the Component Kit framework. You can find examples of output in Studio or Cloud environments in the Gallery. Javajet Component Kit Javajet Component Kit Javajet Component Kit Javajet Component Kit Javajet Component Kit Javajet Component Kit or Component Kit Javajet Component Kit Javajet Component Kit Javajet Component Kit Javajet Component Kit Javajet Component Kit Javajet Component Kit Javajet Component Kit Javajet Component Kit Javajet Component Kit Javajet Component Kit or Previously, the execution of a custom component was described through several Javajet files: _begin.javajet, containing the code required to initialize the component. _main.javajet, containing the code required to process each line of the incoming data. _end.javajet, containing the code required to end the processing and go to the following step of the execution. With the Component Kit, the entire execution flow of a component is described through its main Java class (for example, LoggerProcessor) and through services for reusable parts. Each type of component has its own execution logic. The same basic logic is applied to all components of the same type, and is then extended to implement each component specificities. The project generated from the starter already contains the basic logic for each component. Talend Component Kit framework relies on several primitive components. All components can use @PostConstruct and @PreDestroy annotations to initialize or release some underlying resource at the beginning and the end of a processing. In distributed environments, class constructor are called on cluster manager nodes. Methods annotated with @PostConstruct and @PreDestroy are called on worker nodes. Thus, partition plan computation and pipeline tasks are performed on different nodes. All the methods managed by the framework must be public. Private methods are ignored. The framework is designed to be as declarative as possible but also to stay extensible by not using fixed interfaces or method signatures. This allows to incrementally add new features of the underlying implementations. To ensure that the Cloud-compatible approach of the Component Kit framework is respected, some changes were introduced on the implementation side, including: The File mode is no longer supported. You can still work with URIs and remote storage systems to use files. The file collection must be handled at the component implementation level. The input and output connections between two components can only be of the Flow or Reject types. Other types of connections are not supported. Every Output component must have a corresponding Input component and use a dataset. All datasets must use a datastore. To get started with the Component Kit framework, you can go through the following documents: Learn the basics about Talend Component Kit Create and deploy your first Component Kit component Learn about the Starter Start implementing components Integrate a component to Talend Studio Check some examples of components built with Talend Component Kit

Installing components using a CAR file  How to build a component archive that you can easily share and how to install the shared .car file in Talend Studio.   deploy install car .car car-bundler component archive studio-integration

Components built using Talend Component Kit can be shared as component archives (.car). These CAR files are executable files allowing to easily deploy the components it contains to any compatible version of Talend Studio. Component developers can generate .car files from their projects to share their components and make them available for other users, as detailed in this document. This document assumes that you have a component archive (.car) file and need to deploy it to Talend Studio. The component archive (.car) is executable and exposes the studio-deploy command which takes a Talend Studio home path as parameter. When executed, it installs the dependencies into the Studio and registers the component in your instance. For example: You can also upload the dependencies to your Nexus server using the following command: In this command, Nexus URL and repository name are mandatory arguments. All other arguments are optional. If arguments contain spaces or special symbols, you need to quote the whole value of the argument. For example: Talend Studio allows you to share components you have created using Talend Component Kit to other users working on the same remote project. Remote projects are available with Enterprise versions of Talend Studio only. Also, note that this feature has been removed in Studio since 7.3 release. Make sure you are connected to a remote project and the artifact repository for component sharing has been properly configured. On the toolbar of the Studio main window, click or click File > Edit Project Properties from the menu bar to open the Project Settings dialog box. In the tree view of the dialog box, select Repository Share to open the corresponding view. Select the Propagate components update to Artifact Repository check box. In the Repository ID field, specify the artifact repository configured for component sharing, and then click Check connection to verify the connectivity. Click Apply and Close to validate the settings and close the dialog box. Create a folder named patches at the root of your Talend Studio installation directory, then copy the .car files of the components you want share to this folder. Restart your Talend Studio and connect to the remote project. The components are deployed automatically to the repository and available in the Palette for other users when connected to a remote project with the same sharing repository configuration. My custom component builds correctly but does not appear in Talend Studio, how to fix it? This issue can be caused by the icon specified in the component metadata. Make sure to specify a custom icon for the component and the component family. These custom icons must be in PNG format to be properly handled by Talend Studio. Remove SVG parameters from the talend.component.server.icon.paths property in the HTTP server configuration. Refer to this section. Learn more about defining custom icons for components in this document.

Defining datasets and datastores  Learn how to define datasets and datastores for input and output components.   datastore dataset validation input output studio studio-integration connection

Datasets and datastores are configuration types that define how and where to pull the data from. They are used at design time to create shared configurations that can be stored and used at runtime. All connectors (input and output components) created using Talend Component Kit must reference a valid dataset. Each dataset must reference a datastore. Datastore: The data you need to connect to the backend. Dataset: A datastore coupled with the data you need to execute an action. Make sure that: a datastore is used in each dataset. each dataset has a corresponding input component (mapper or emitter). This input component must be able to work with only the dataset part filled by final users. Any other property implemented for that component must be optional. These rules are enforced by the validateDataSet validation. If the conditions are not met, the component builds will fail. Make sure that: a datastore is used in each dataset. each dataset has a corresponding input component (mapper or emitter). This input component must be able to work with only the dataset part filled by final users. Any other property implemented for that component must be optional. These rules are enforced by the validateDataSet validation. If the conditions are not met, the component builds will fail. A datastore defines the information required to connect to a data source. For example, it can be made of: a URL a username a password. You can specify a datastore and its context of use (in which dataset, etc.) from the Component Kit Starter. Make sure to modelize the data your components are designed to handle before defining datasets and datastores in the Component Kit Starter. Once you generate and import the project into an IDE, you can find datastores under a specific datastore node. Example of datastore: A dataset represents the inbound data. It is generally made of: A datastore that defines the connection information needed to access the data. A query. You can specify a dataset and its context of use (in which input and output component it is used) from the Component Kit Starter. Make sure to modelize the data your components are designed to handle before defining datasets and datastores in the Component Kit Starter. Once you generate and import the project into an IDE, you can find datasets under a specific dataset node. Example of dataset referencing the datastore shown above: The display name of each dataset and datastore must be referenced in the message.properties file of the family package. The key for dataset and datastore display names follows a defined pattern: ${family}.${configurationType}.${name}._displayName. For example: These keys are automatically added for datasets and datastores defined from the Component Kit Starter. When deploying a component or set of components that include datasets and datastores to Talend Studio, a new node is created under Metadata. This node has the name of the component family that was deployed. It allows users to create reusable configurations for datastores and datasets. With predefined datasets and datastores, users can then quickly fill the component configuration in their jobs. They can do so by selecting Repository as Property Type and by browsing to the predefined dataset or datastore. Studio will generate connection and close components auto for reusing connection function in input and output components, just need to do like this example: Then the runtime mapper and processor only need to use @Connection to get the connection like this: The component server scans all configuration types and returns a configuration type index. This index can be used for the integration into the targeted platforms (Studio, web applications, and so on). Mark a model (complex object) as being a dataset. API: @org.talend.sdk.component.api.configuration.type.DataSet Sample: Mark a model (complex object) as being a datastore (connection to a backend). API: @org.talend.sdk.component.api.configuration.type.DataStore Sample: Mark a model (complex object) as being a dataset discovery configuration. API: @org.talend.sdk.component.api.configuration.type.DatasetDiscovery Sample: The component family associated with a configuration type (datastore/dataset) is always the one related to the component using that configuration. The configuration type index is represented as a flat tree that contains all the configuration types, which themselves are represented as nodes and indexed by ID. Every node can point to other nodes. This relation is represented as an array of edges that provides the child IDs. As an illustration, a configuration type index for the example above can be defined as follows:

Iterating on component development with Talend Studio  How to install and configure components developed with Talend Component Kit in Talend Open Studio   component server deploy install studio studio-integration car car-bundler version component-server debug

Integrate components you developed using Talend Component Kit to Talend Studio in a few steps. Also learn how to enable the developer and debugging modes to iterate on your component development. The version of Talend Component Kit you need to use to develop new components depends on the version of Talend Studio in which components will be integrated. Refer to this document to learn about compatibility between Talend Component Kit and the different versions of Talend applications. Learn how to build and deploy components to Talend Studio using Maven or Gradle Talend Component Kit plugins. This can be done using the deploy-in-studio goal from your development environment. If you are unfamiliar with component development, you can also follow this example to go through the entire process, from creating a project to using your new component in Talend Studio. The Studio integration relies on the Component Server, that the Studio uses to gather data about components created using Talend Component Kit. You can change the default configuration of component server by modifying the $STUDIO_HOME/configuration/config.ini file. The following parameters are available: Name Description Default component.environment Enables the developer mode when set to dev - component.debounce.timeout Specifies the timeout (in milliseconds) before calling listeners in components Text fields 750 component.kit.skip If set to true, the plugin is not enabled. It is useful if you don’t have any component developed with the framework. false component.java.arguments Component server additional options - component.java.m2 Maven repository that the server uses to resolve components Defaults to the global Studio configuration component.java.coordinates A list of comma-separated GAV (groupId:artifactId:version) of components to register - component.java.registry A properties file with values matching component GAV (groupId:artifactId:version) registered at startup. Only use slashes (even on windows) in the path. - component.java.port Sets the port to use for the server random components.server.beam.active Active, if set to true, Beam support (Experimental). It requires Beam SDK Java core dependencies to be available. false component.server.jul.forceConsole Adds a console handler to JUL to see logs in the console. This can be helpful in development because the formatting is clearer than the OSGi one in workspace/.metadata/.log. It uses the java.util.logging.SimpleFormatter.format property to define its format. By default, it is %1$tb %1$td, %1$tY %1$tl:%1$tM:%1$tS %1$Tp %2$s%n%4$s: %5$s%6$s%n, but for development purposes [%4$s] %5$s%6$s%n is simpler and more readable. false Here is an example of a common developer configuration/config.ini file: The developer mode is especially useful to iterate on your component development and to avoid closing and restarting Talend Studio every time you make a change to a component. It adds a Talend Component Kit button in the main toolbar: When clicking this button, all components developed with the Talend Component Kit framework are reloaded. The cache is invalidated and the components refreshed. You still need to add and remove the components to see the changes. To enable it, simply set the component.environment parameter to dev in the config.ini configuration file of the component server. Several methods allow you to debug custom components created with Talend Component Kit in Talend Studio. From your development tool, create a new Remote configuration, and copy the Command line arguments for running remote JVM field. For example, -agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=*:5005, where: the suspend parameter of the -agentlib argument specifies whether you want to suspend the debugged JVM until the debugger attaches to it. Possible values are n (no, default value) or y (yes). the address parameter of the -agentlib argument is the port used for the remote configuration. Make sure this port is available. Open Talend Studio. Create a new Job that uses the component you want to debug or open an existing one that already uses it. Go to the Run tab of the Job and select Use specific JVM arguments. Click New to add an argument. In the popup window, paste the arguments copied from the IDE. Enter the corresponding debug mode: To debug the runtime, run the Job and access the remote host configured in the IDE. To debug the Guess schema option, click the Guess schema action button of the component and access the remote host configured in the IDE. From your development tool, create a new Remote configuration, and copy the Command line arguments for running remote JVM field. For example, -agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=*:5005, where: suspend defines whether you need to access the defined configuration to run the remote JVM. Possible values are n (no, default value) or y (yes). address is the port used for the remote configuration. Make sure this port is available. Access the installation directory of your Talend Sutdio. Open the .ini file corresponding to your Operating System. For example, TOS_DI-win-x86_64.ini. Paste the arguments copied from the IDE in a new line of the file. Go to Talend Studio to use the component, and access the host host configured in the IDE. If you run multiple Studio instances automatically in parallel, you can run into some issues with the random port computation. For example on a CI platform. For that purpose, you can create the $HOME/.talend/locks/org.talend.sdk.component.studio-integration.lock file. Then, when a server starts, it acquires a lock on that file and prevents another server to get a port until it is started. It ensures that you can’t have two concurrent processes getting the same port allocated. However, it is highly unlikely to happen on a desktop. In that case, forcing a different value through component.java.port in your config.ini file is a better solution for local installations.

Changelog  Talend Component Kit Changelog   changelog release note latest changes version

TCOMP-2239: Fix Record.Builder interface to avoid API break schema-record TCOMP-2226: Implement a default UI for streaming sources for user configuration of a StopStrategy component-form component-manager TCOMP-2234: Override blocking read process in streaming connectors component-manager studio TCOMP-2258: @Documentation to tooltips in uiSchema component-form component-server TCOMP-2147: Decrease log level for blacklisted dependencies component-manager TCOMP-2228: Upgrade git-commit-id-plugin to 4.9.10 TCOMP-2232: Upgrade slf4j to 1.7.34 TCOMP-2238: Upgrade jib-core to 0.16.0 TCOMP-2249: Upgrade johnzon to 1.2.19 TCOMP-2251: Upgrade jackson to 2.13.3 TCOMP-2252: MavenRepositoryResolver call fallback only it’s needed component-manager TCOMP-2257: Upgrade meecrowave to 1.2.14 component-manager TCOMP-2263: Upgrade openwebbeans-se to 2.0.27 component-manager TCOMP-2264: Upgrade TSBI to 3.0.5-20220907120958 tsbi TCOMP-2239: Fix Record.Builder interface to avoid API break schema-record TCOMP-2182: Guess Schema in Studio always uses version of component 1 studio studio-integration TCOMP-2190: Handle partial messages for large payloads in websocket communications component-server studio TCOMP-2107: Implement a stop strategy for streaming input connectors component-manager studio TCOMP-2177: Suppress illegal reflective access operation has occurred warnings component-manager TCOMP-2163: [QA] Component Runtime API test Framework testing TCOMP-2187: Introduce IntegerConstraintEnricher component-form TCOMP-2204: Upgrade netty to 4.1.79.Final TCOMP-2205: Upgrade crawler-commons to 1.3 TCOMP-2206: Upgrade guava to 31.1-jre TCOMP-2207: Upgrade maven to 3.8.6 TCOMP-2208: Upgrade maven-shade-plugin to 3.3.0 build TCOMP-2209: Upgrade junit5 to 5.9.0 TCOMP-2210: Upgrade tomcat to 9.0.63 TCOMP-2211: Upgrade cxf to 3.5.2 TCOMP-2212: Upgrade bndlib to 5.2.0 TCOMP-2217: Update rat-plugin to 0.14 build TCOMP-2219: Add API to convert data in Record schema-record TCOMP-2223: Upgrade log4j to 2.18.0 TCOMP-2227: Upgrade commons-io to 2.9.0 TCOMP-2229: Upgrade jcommander to 1.81 TCOMP-2230: Allow specific context UI TCOMP-2233: support decimal type TCOMP-2190: Handle partial messages for large payloads in websocket communications component-server studio TCOMP-2177: Suppress illegal reflective access operation has occurred warnings component-manager TCOMP-2177: Suppress illegal reflective access operation has occurred warnings component-manager TCOMP-2176: Record : Infinite loop schema-record TCOMP-2146: Car bundler improvements car-bundler maven-plugin TCOMP-2151: Add documentation translation to metadata component-server TCOMP-2132: Optimisation for preparation schema-record TCOMP-2143: [JDBC TCK]: Support MODULE_LIST field for studio in tck connector ui for driver jars choose studio TCOMP-2152: Upgrade jackson to 2.13.2 beam bom maven-plugin TCOMP-2153: Bump netty to 4.1.77.Final due to CVE CVE-2022-24823 testing TCOMP-2154: Upgrade maven-settings to 3.8.5 due to CVE-2021-26291 build TCOMP-2155: Upgrade jdom2 to 2.0.6.1 due to CVE-2021-33813 beam TCOMP-2164: Ensure that decryption is done only on credential fields component-server vault-client TCOMP-2171: Add component type to ComponentIndex component-server TCOMP-2152: Upgrade jackson to 2.13.2 beam bom maven-plugin TCOMP-2146: Car bundler improvements car-bundler maven-plugin TCOMP-2111: [Runtime convergence] : Join connector fails in cloud environment with hybrid tck/beam connectors api beam TCOMP-2123: Bug on order columns for Avro Impl beam schema-record TCOMP-2127: Fix avro records where array contains nullable array beam schema-record TCOMP-2131: starter-toolkit fails when generating a connector from openapi description starter TCOMP-2133: component-registry uses detailed version not baseVersion in snapshot case build maven-plugin TCOMP-2134: Activate intellij plugin by default intellij starter TCOMP-2138: starter-toolkit github repository creation process fails starter TCOMP-2135: Component web tester in non interactive mode component-server maven-plugin testing TCOMP-2126: give default implementation to Record.Builder to not break api api TCOMP-2130: Add git informations in starter-toolkit’s environment starter TCOMP-2127: Fix avro records where array contains nullable array beam schema-record TCOMP-2130: Add git informations in starter-toolkit’s environment starter TCOMP-2126: give default implementation to Record.Builder to not break api api TCOMP-2085: Add extras manipulations on Record BuilderImpl beam schema-record TCOMP-2102: Wrong maven resolution with car when using snapshot in prepare-repository goal build maven-plugin TCOMP-2119: Avro Record : array containing Null. beam schema-record TCOMP-2112: [JDBC] discover schema API is failing on production. build maven-plugin TCOMP-2103: Link affected jira components to issue in changelog as keywords for search documentation TCOMP-2098: Improve m2 discovery process documentation TCOMP-2104: Header link should be linked to latest path documentation TCOMP-2105: Upgrade Tomcat to 9.0.60 component-server maven-plugin starter TCOMP-2108: Upgrade maven plugins TCOMP-2109: Upgrade git-commit-id-plugin to 4.0.5 TCOMP-2110: Replace log4j by reload4j stitch TCOMP-2114: Upgrade TSBI to 2.9.27-20220331162145 component-server component-server-vault-proxy starter tsbi TCOMP-2115: Upgrade jackson to 2.12.6 due to CVE-2020-36518 bom TCOMP-2116: Upgrade log4j2 to 2.17.2 TCOMP-2117: Upgrade slf4j to 1.7.33 TCOMP-2118: Upgrade tomcat to 9.0.62 (mitigation for CVE-2022-22965) component-server component-server-vault-proxy starter TDI-47693 : fix misaligned openwebbeans-spi dependency studio TCOMP-2003: Maven dependency classifier considered as version in dependencies.txt by Studio TCOMP-2096: Support BigDecimal type in DI integration TCOMP-2087: Upgrade Tomcat to 9.0.59 due to CVE-2022-23181 TCOMP-2088: Upgrade OpenWebBeans to 2.0.26 TCOMP-2089: Upgrade meecrowave to 1.2.13 TCOMP-2090: Upgrade johnzon to 1.2.16 TCOMP-2091: Upgrade Beam to 2.36.0 TCOMP-2092: MvnCoordinateToFileConverter fakes classifiers' support TCOMP-2093: Improve component-runtime documentation site TCOMP-2097: Upgrade cxf to 3.5.1 TCOMP-1803: RecordBuilder.withRecord(final String name, final Record value) doesn’t accept null value TCOMP-2079: Intellij plugin fails on plugin startup TCOMP-2080: AvroRecord refuses Union[null, RecordSchema] TCOMP-2082: ComponentManager’s findDefaultM2 method takes comment as granted TCOMP-2058: Add dependencies on config TCOMP-2074: Change JSON log format to conform to ECS TCOMP-2083: Give component-runtime version on ComponentManager startup TCOMP-2084: Allow use of i18n in connectors' metadata for custom labels TCOMP-2079: Intellij plugin fails on plugin startup TCOMP-2080: AvroRecord refuses Union[null, RecordSchema] TCOMP-2082: ComponentManager’s findDefaultM2 method takes comment as granted TCOMP-2063: Avro Record Constructor TCOMP-2064: NPE with lookup missconfiguration in Join processor TCOMP-2067: Bug on order columns TCOMP-2071: Define default methods on Schema / Entry / Record interfaces TCOMP-2045: Pass and read meta information about columns. TCOMP-2072: Ligthen parameters for component-server docker image TCOMP-2057: AvroSchema : optimize getType by using type fields TCOMP-2060: Upgrade log4j2 to 2.17.0 due to CVE-2021-45105 TCOMP-2061: Upgrade netty to 4.1.72.Final due to CVE-2021-43797 TCOMP-2065: Internationalized Services as Serializable TCOMP-2068: Upgrade log4j2 to 2.17.1 due to CVE-2021-44832 TCOMP-2069: Create a latest tag for component-runtime images TCOMP-2070: Upgrade TSBI to 2.9.18-20220104141654 TCOMP-2073: Upgrade maven-core to 3.8.4 due to CVE TCOMP-2047: RecordBuilder in RowstructVisitor keeps values TCOMP-2048: RowstructVisitor should respect case in member not java convention TCOMP-2049: Incompatible class change on Entry TCOMP-2053: Migration failing when using custom java code in configuration TCOMP-2018: Optimize Avro Record TCOMP-2054: Upgrade log4j2 to 2.16.0 due to CVE-2021-44228 TCOMP-2053: Migration failing when using custom java code in configuration TCOMP-2054: Upgrade log4j2 to 2.16.0 due to CVE-2021-44228 TCOMP-2049: Incompatible class change on Entry TCOMP-2047: RecordBuilder in RowstructVisitor keeps values TCOMP-2048: RowstructVisitor should respect case in member not java convention TCOMP-2019: Sanitized columns name collision support TCOMP-2021: Missing logic when handling null date values in Record TCOMP-2046: Rowstruct visitor recreates schema at each incoming row TCOMP-2004: [Runtime convergence] New tck/API to retrieve dataset full content TCOMP-2008: Add ability to insert a schema entry on Record BuilderImpl TCOMP-1924: Support Java 17 runtime TCOMP-2023: Upgrade gradle to 6.9.1 TCOMP-2024: Upgrade maven-bundle-plugin to 4.2.1 TCOMP-2025: Upgrade documentation to latest TCOMP-2027: Upgrage junit to 5.8.1 TCOMP-2028: Provide nashorn scripting engine when using java15+ TCOMP-2029: Upgrade jaxb to 2.3.5 TCOMP-2030: Upgrade Tomcat to 9.0.54 due to CVE-2021-42340 TCOMP-2031: Upgrade Beam to 2.33.0 TCOMP-2032: Upgrade Spark to 3.2.0 TCOMP-2035: Check build w/ Java 17 on CI TCOMP-2036: Upgrade cxf to 3.4.5 TCOMP-2037: Upgrade johnzon to 1.2.15 TCOMP-2038: Upgrade bouncycastle to 1.69 TCOMP-2042: Return a key related to version of connector services and its content TCOMP-2043: Upgrade spotless to 2.17.3 and talend-java-formatter to 0.2.2 TCOMP-2044: Upgrade TSBI to 2.9.2-20211106085418 TCOMP-2045: Pass and read meta information about columns. studio-integration TCOMP-2096: Support BigDecimal type in DI integration schema-record studio studio-integration TCOMP-2070: Upgrade TSBI to 2.9.18-20220104141654 build component-server component-server-vault-proxy tsbi TCOMP-2105: Upgrade Tomcat to 9.0.60 component-server maven-plugin starter TCOMP-2030: Upgrade Tomcat to 9.0.54 due to CVE-2021-42340 TCOMP-2053: Migration failing when using custom java code in configuration TCOMP-2054: Upgrade log4j2 to 2.16.0 due to CVE-2021-44228 TCOMP-2048: RowstructVisitor should respect case in member not java convention TCOMP-2047: RecordBuilder in RowstructVisitor keeps values TCOMP-2046: Rowstruct visitor recreates schema at each incoming row TCOMP-1963: Missing IMetaDataColumn fields in guess schema TCOMP-1987: Avro record : Array of Array of records issue TCOMP-1988: Unable to run component-runtime connectors in Studio with JDK 17 TCOMP-2005: Non defined columns appear in schema TCOMP-2006: Support empty values for Numbers case TCOMP-2010: Error on Documentation build on "less" usage TCOMP-2020: talend-component-kit-intellij-plugin module build fails using Bintray (decomissioned) TCOMP-1900: Create jenkins release process for component-runtime TCOMP-1997: Enable plugins reloading according criteria TCOMP-2000: Upgrade netty to 4.1.68.Final TCOMP-2001: Upgrade Beam to 2.32.0 TCOMP-2007: connectors as a json object in Environment TCOMP-2009: Upgrade dockerfile-maven-plugin to 1.4.13 TCOMP-2016: UiSchema can’t hold advanced titleMap for more advanded datalist widgets TCOMP-2007: connectors as a json object in Environment TCOMP-1957: Avro schema builder issue TCOMP-1994: WebSocketClient$ClientException when executing action in Studio TCOMP-1923: Record : add metadata TCOMP-1990: Update jsoup to 1.14.2 due to CVE-2021-37714 TCOMP-1991: Update groovy to 3.0.9 due to CVE-2021-36373 / CVE-2021-36374 TCOMP-1992: Update lombok to 1.18.20 TCOMP-1993: Update TSBI to 2.9.0-20210907155713 TCOMP-1995: Expose the connectors (global) version in the "Environment" response TCOMP-1996: BaseService must not define equals & hashcode TCOMP-1994: WebSocketClient$ClientException when executing action in Studio TCOMP-1904: Delegate Avro record in AvroRecord seems to be invalid TCOMP-1967: goal uispec generation failure TCOMP-1983: fix module inclusion in dependencies.txt when build is java9+ TCOMP-1981: Allow to filter artifacts in car file generation TCOMP-1982: Allow to include extra artifacts in car file generation TCOMP-1876: Make schemaImpl immutable TCOMP-1885: Service Serializable TCOMP-1906: Redefine equals on RecordImpl TCOMP-1955: Upgrade cxf to 3.4.4 due to CVE-2021-30468 TCOMP-1966: Upgrade Tomcat to 9.0.50 due to CVE-2021-33037 TCOMP-1968: Upgrade maven to 3.8.1 TCOMP-1969: Upgrade Beam to 2.31.0 TCOMP-1970: Upgrade jackson to 2.12.1 TCOMP-1971: Upgrade Junit to 5.8.0-M1 TCOMP-1972: Upgrade slf4j to 1.7.32 TCOMP-1973: Upgrade log4j to 2.14.1 TCOMP-1974: Upgrade commons-compress to 1.21 due to CVE-2021-36090 TCOMP-1975: Upgrade TSBI to 2.8.2-20210722144648 TCOMP-1976: Upgrade meecrowave to 1.2.11 TCOMP-1977: Upgrade OpenWebBeans to 2.0.23 TCOMP-1978: Upgrade tomcat to 9.0.44 TCOMP-1979: Upgrade xbean to 4.20 TCOMP-1980: Upgrade meecrowave to 1.2.12 TCOMP-1967: goal uispec generation failure TCOMP-1935: After Variables doesn’t support custom object types TCOMP-1941: Maven goal talend-component:web fails on startup TCOMP-1947: Implement a retry strategy on failure in vault-client TCOMP-1948: Raised exception in component-server(s) should be serialized in json TCOMP-1952: IllegalArgumentException when the http response return duplicated header. TCOMP-1939: Upgrade TSBI to Talend 2.7.2-20210616074048 TCOMP-1940: Upgrade Beam to 2.30.0 TCOMP-1941: Maven goal talend-component:web fails on startup TCOMP-1939: Upgrade TSBI to Talend 2.7.2-20210616074048 TCOMP-1919: Sanitize must force encoding file TCOMP-1925: Incorrect mapping of the parameters after arrays TCOMP-1937: Classpath not fully parsed in TSBI images TCOMP-1917: Add DatasetDiscovery annotation TCOMP-1707: Upgrade Geronimo :: Simple JCache to 1.0.5 TCOMP-1850: component-server with vault feature TCOMP-1907: Service monitor implementation & cleaning of grafana dashboard TCOMP-1921: Upgrade TSBI to 2.7.0-20210527090437 TCOMP-1930: Remove jsoup 1.7.x transitive dependency due to CVE-2015-6748 TCOMP-1936: Extend properties in Schema to use JsonValue TCOMP-1938: Add the german locale in the locale mapping TCOMP-1938: Add the german locale in the locale mapping TCOMP-1937: Classpath not fully parsed in TSBI images TCOMP-1919: Sanitize must force encoding file TCOMP-1886: Errors on Schema.sanitizeConnectionName TCOMP-1905: component-runtime fails to build with Java 11 TCOMP-1893: Upgrade to Beam 2.29.0 and use Beam’s Spark 3 specific module TCOMP-705: Support After variables TCOMP-1898: Add method to Record.Builder TCOMP-1910: Upgrade commons-io to 2.8.0 due to CVE-2021-29425 TCOMP-1911: Upgrade cxf to 3.4.3 due to CVE-2021-22696 TCOMP-1912: Upgrade TSBI to 2.6.7-20210503202416 TCOMP-1938: Add the german locale in the locale mapping TCOMP-1937: Classpath not fully parsed in TSBI images TCOMP-1880: Engine Server returns binary data instead of json (aka does not respect the compressed header) TCOMP-1886: Errors on Schema.sanitizeConnectionName TCOMP-1815: Support of ComponentException in migration TCOMP-1873: Add method getEntry on TCK Record Schema class TCOMP-1892: Upgrade Spark to 3.0.1 TCOMP-1888: Remove/change validation of ComponentException TCOMP-1894: Uniformize docker images entrypoints TCOMP-1895: Enhance coercion in RecordConverters TCOMP-1896: Upgrade TSBI to 2.6.4-20210331133410 TCOMP-1806: Double values are rounded to 5 decimal places in studio TCOMP-1851: HttpClient implementation class is a Service with State TCOMP-1864: JsonSchemaConverter and johnzon-jsonschema 1.2.9+ look incompatible TCOMP-1866: Invalid number coercion on primitive type TCOMP-1869: byte[] handling is incorrect in dynamic column TCOMP-1871: Dynamic metadata name is not sanitized TCOMP-1861: Add a 'props' property in the Schema TCOMP-1863: Upgrade batik-codec to 1.14 due to CVE-2020-11988 TCOMP-1865: Upgrade cxf to 3.4.2 TCOMP-1867: Upgrade Apache Beam to 2.28.0 TCOMP-1878: Upgrade TSBI to 2.6.3-20210304090015 TCOMP-1688: Rewrite JsonSchema required rules to reflect component’s validation rules TCOMP-1857: Pojo conversion don’t support nested Objects TCOMP-1841: Add a SPI that would allow to add metadata to components TCOMP-1847: Upgrade Apache Beam to 2.27.0 TCOMP-1848: Upgrade bouncycastle to 1.68 due to CVE 2020-28052 TCOMP-1849: Proxify metrics component-server’s endpoint TCOMP-1852: Upgrade netty to v4.1.58.Final and ensure default http testing module is java 11 friendly over ssl TCOMP-1854: Upgrade netty to 4.1.59.Final due to CVE-2021-21290 TCOMP-1855: Upgrade johnzon to 1.2.10 TCOMP-1856: Upgrade tomcat to 9.0.43 TCOMP-1841: Add a SPI that would allow to add metadata to components TCOMP-1852: Upgrade netty to v4.1.58.Final and ensure default http testing module is java 11 friendly over ssl TCOMP-1854: Upgrade netty to 4.1.59.Final due to CVE-2021-21290 TCOMP-1848: Upgrade bouncycastle to 1.68 due to CVE 2020-28052 TCOMP-1839: Tomcat websocket server fails to start after tomcat 9.0.40 and meecrowave 1.2.10 TCOMP-1836: Upgrade OpenWebBeans to 2.0.20 TCOMP-1837: Upgrade xbean to 4.18 TCOMP-1838: Upgrade cxf to 3.4.1 TCOMP-1840: Upgrade tomcat to 9.0.41 TCOMP-1842: Upgrade jgit to 5.10.0.202012080955-r TCOMP-1844: Upgrade johnzon to 1.2.9 TCOMP-1845: Upgrade guava to 30.1-jre due to CVE-2020-8908 TCOMP-1848: Upgrade bouncycastle to 1.68 due to CVE 2020-28052 TCOMP-1839: Tomcat websocket server fails to start after tomcat 9.0.40 and meecrowave 1.2.10 TCOMP-1836: Upgrade OpenWebBeans to 2.0.20 TCOMP-1837: Upgrade xbean to 4.18 TCOMP-1827: Upgrade lombok to 1.18.16 TCOMP-1828: Change project’s versioning scheme TCOMP-1829: Upgrade TSBI to 2.5.3-20201201131449 TCOMP-1830: Upgrade Apache Beam to 2.26.0 TCOMP-1832: Upgrade httpclient to 4.5.13 due to CVE-2020-13956 TCOMP-1833: Upgrade spark to 2.4.7 TCOMP-1834: Upgrade groovy to 3.0.7 due to CVE-2020-17521 TCOMP-1787: ComponentManager can’t be re-created after it’s been closed TCOMP-1788: Invalid properties validation TCOMP-1801: Can’t look for resources in the classpath on Windows TCOMP-1761: Support of complete schema definition TCOMP-1725: Upgrade Tomcat to 9.0.40 TCOMP-1792: Uniform error message on component validation TCOMP-1808: Upgrade log4j2 to 2.14.0 TCOMP-1809: Update CXF to 3.3.8 due to CVE-2020-13954 TCOMP-1812: Upgrade junit to 4.13.1 due to CVE-2020-15250 TCOMP-1813: Upgrade jupiter to 5.7.0 TCOMP-1816: Apache Maven Shared Utils: OS Command Injection in Talend/component-runtime (master) and Talend/cloud-components TCOMP-1817: Upgrade gmavenplus-plugin to 1.11.0 TCOMP-1722: REST - Last / in endpoint is removed TCOMP-1757: Studio - context not set when call a @suggestable service TCOMP-1772: Code widget doesn’t allow multiline text TCOMP-1726: Update logos and colors TCOMP-1771: Record builder optimization (with static schema) TCOMP-1773: Upgrade log4j2 to 2.13.3 TCOMP-1774: Upgrade johnzon to 1.2.8 TCOMP-1775: Upgrade commons-lang3 to 3.11 TCOMP-1776: Upgrade commons-codec to 1.15 TCOMP-1777: Upgrade jgit to 5.9.0.202009080501-r TCOMP-1778: Upgrade jib-core to 0.15.0 TCOMP-1779: Upgrade batik to 1.13 TCOMP-1780: Upgrade TSBI to 2.4.0-20200925092052 TCOMP-1781: Upgrade asciidoctorj to 2.4.1 TCOMP-1782: Upgrade rrd4j to 3.7 TCOMP-1783: Upgrade netty to 5.0.0.Alpha2 TCOMP-1784: Upgrade ziplock to 8.0.4 TCOMP-1785: Upgrade JRuby to 9.2.13.0 TCOMP-1786: Upgrade to Apache Beam 2.24.0 TCOMP-1804: Upgrade to Apache Beam 2.25.0 TCOMP-1805: Upgrade TSBI to 2.5.0-20201030171201 TCOMP-1770: Performance loss on Ouput components in Studio TCOMP-1750: Deadlock at TPD job startup using the Component SDK and using the Workday component TCOMP-1759: Guess schema mixes columns returned by tck service TCOMP-1752: Make component-runtime class loader find classes in RemoteEngine JobServer TCOMP-1764: Upgrade to Apache Beam 2.23.0 TCOMP-1719: Header responses for icon not propagated correctly from Component-server-vault-proxy TCOMP-1733: NPE in Studio metadata connection with activeif on different layouts TCOMP-1734: Studio froze when installing a patch with azure-dls-gen2-1.10.0-component.car TCOMP-1736: JobImpl retrieves more than streaming.maxRecords parameter TCOMP-1739: Use scala version defined on parent for Spark related components TCOMP-1695: Support List type in Studio TCOMP-1737: Allow to force installation of an already existing component with the car bundle TCOMP-1728: Enforce use of the defined error contract in connectors TCOMP-1731: Make connectors docker image TSBI compliant TCOMP-1738: Upgrade to Apache Beam 2.22.0 TCOMP-1742: Upgrade johnzon to 1.2.7 TCOMP-1727: WebSocketContainer not present in ServletContext TCOMP-1696: Definition of an error contract to handle expected errors TCOMP-1729: Upgrade to Apache Beam 2.21.0 TCOMP-1730: Upgrade johnzon to 1.2.6 TCOMP-1719: Header responses for icon not propagated correctly from Component-server-vault-proxy TCOMP-1649: Tomcat bump to 9.0.31 broke talend-component:web goal TCOMP-1676: Starter-toolkit mvn package throws error when running for the first time TCOMP-1677: Using other types than String in Studio’s context values causes compilation error TCOMP-1679: Combination of @Required and @Suggestable on a field creates strange behaviour TCOMP-1682: Remove key attribute in UISchema for containers TCOMP-1686: antora helper function relativize corrupts documentation TCOMP-1694: [MAVEN PLUGIN] validateSvg argument is ineffective TCOMP-1698: UiSpecService injects a wrong property for suggestions and dynamic_values TCOMP-1718: Duplicated code in RecordConverters TCOMP-1702: Improve columns name TCOMP-1655: Upgrade jib-core to 0.13.1 TCOMP-1656: Upgrade log4j2 to 2.13.1 TCOMP-1657: Upgrade maven to 3.6.3 TCOMP-1658: Upgrade groovy to 3.0.2 TCOMP-1659: Upgrade lombok to 1.18.12 TCOMP-1660: Upgrade commons-compress to 1.20 TCOMP-1661: Upgrade commons-codec to 1.14 TCOMP-1662: Upgrade guava to 28.2-jre TCOMP-1663: Upgrade ziplock to 8.0.1 TCOMP-1664: Upgrade asciidoctorj to 2.2.0 and its dependencies TCOMP-1665: Upgrade jackson to 2.10.3 TCOMP-1666: Upgrade batik-codec to 1.12 TCOMP-1667: Upgrade jgit to 5.6.1.202002131546-r TCOMP-1668: Upgrade junit to 4.13 TCOMP-1669: Upgrade bouncycastle to 1.64 TCOMP-1670: Upgrade spark-core_2.11 to 2.4.5 TCOMP-1671: Upgrade maven-shade-plugin to 3.2.2 TCOMP-1672: Upgrade httpclient to 4.5.12 TCOMP-1673: Upgrade component-runtime-testing dependencies TCOMP-1674: Upgrade tomitribe-crest to 0.14 TCOMP-1678: Upgrade jgit to 5.7.0.202003090808-r TCOMP-1685: Provide docker images based on TSBI TCOMP-1687: More explicit exception messsage on reflection for findField TCOMP-1690: Upgrade netty to 4.1.48.Final TCOMP-1692: Update CXF to 3.3.6 due to CVE-2020-1954 TCOMP-1697: Update BouncyCastle to 1.65 TCOMP-1703: Upgrade log4j-2 to 2.13.2 TCOMP-1705: Upgrade to Apache Beam 2.20.0 TCOMP-1706: Upgrade OpenWebBeans to 2.0.16 TCOMP-1708: Upgrade groovy to 3.0.3 TCOMP-1710: Upgrade johnzon to 1.2.5 TCOMP-1711: Upgrade guava to 29.0-jre TCOMP-1712: Upgrade commons-lang3 to 3.10 TCOMP-1713: Upgrade jackson to 2.11.0 TCOMP-1714: Upgrade junit to 5.7.0-M1 TCOMP-1716: Upgrade maven shade plugin to 3.2.3 and misc libs TCOMP-1639: component-server incorrect response set in request TCOMP-1640: Ensure Intellij plugin works with Intellij Idea IU-201 TCOMP-1641: Upgrade OpenWebBeans to 2.0.15 TCOMP-1642: Upgrade Groovy to 3.0.1 TCOMP-1643: Add automatic scheduling eviction system on LocalCache TCOMP-1644: Upgrade log4j to 2.13.0 TCOMP-1645: Ensure correct wording is used in @Documentation TCOMP-1647: Upgrade netty to 4.1.45.Final TCOMP-1648: Unsafe Dependancy Resolution on jcommander TCOMP-1638: Inject services to delegate in proxy TCOMP-1619: Handle correctly DATETIME field type on AvroRecord TCOMP-1622: [DOC] @Icon is not supported on datastore/dataset TCOMP-1623: Change scheme for maven repos TCOMP-1628: Manage BigDecimal in RecordConverter TCOMP-1629: Ensure LocalConfiguration environment source replace dot with _ TCOMP-1630: Avoid NPE when configurationByExample() is called in a list of primitive without values TCOMP-1631: int attribute in pojo is transformed to double in a Record TCOMP-1632: Add a way to evict cached data from LocalCache TCOMP-1616: Upgrade OpenWebBeans to 2.0.14 in component-server and component-server-vault-proxy TCOMP-1617: Move mocked api results to github pages TCOMP-1618: Upgrade Junit to 5.6.0 TCOMP-1620: Upgrade to Apache Beam 2.18.0 TCOMP-1621: Upgrade to Johnzon 1.2.3 TCOMP-1624: @Service does not support list injections TCOMP-1625: Upgrade to xbean 4.16 TCOMP-1626: Ensure ContainerListenerExtensions can be sorted TCOMP-1627: Upgrade to Apache Beam 2.19.0 TCOMP-1633: Upgrade Groovy to 3.0.0 TCOMP-1634: Upgrade tomcat to 9.0.31 TCOMP-1596: Windows URI are broken TCOMP-1597: Httpclient does not support multi query parameters TCOMP-1598: validator task uses ENGLISH locale to validate instead of root one TCOMP-1612: Starter toolkit shouldn’t use the default 'STAR' icon in demo component TCOMP-1585: Upgrade netty to 4.1.43.Final TCOMP-1586: Upgrade ziplock to v8.0.0 TCOMP-1587: Upgrade jib to v0.12.0 TCOMP-1588: Upgrade JRuby to v9.2.9.0 TCOMP-1589: Upgrade crest to v0.11.0 TCOMP-1591: Update to Tomcat 9.0.29 TCOMP-1592: Update to Johnzon 1.2.2 TCOMP-1593: Update to OpenWebBeans 2.0.13 TCOMP-1595: Infinite partitionmapper shouldn’t require assesor TCOMP-1599: More unsafe usage tolerance on JVM versions TCOMP-1600: Upgrade to Tomcat 9.0.30 TCOMP-1606: Ensure job dsl can stop infinite inputs TCOMP-1608: Upgrade geronimo openapi to 1.0.12 TCOMP-1609: Ensure Intellij plugin works with Intellij Idea 2019 TCOMP-1611: Upgrade to Apache Beam 2.17.0 TCOMP-1613: Upgrade cxf to 3.3.5 TCOMP-1614: Upgrade groovy to 3.0.0-rc3 TCOMP-1615: Upgrade OpenWebBeans to 2.0.14 TCOMP-1752: Make component-runtime class loader find classes in RemoteEngine JobServer TCOMP-1560: Min and Max error message during configuration validation are reversed TCOMP-1563: Web Tester does not work anymore (maven/gradle goal/task) TCOMP-1573: Body encoder is called twice for each query TCOMP-1582: Deploy to Nexus 3.15 caused "Provided url doesn’t respond neither to Nexus 2 nor to Nexus 3 endpoints" TCOMP-1576: Add the possibility to desactivate http client redirection in HTTP Configurer TCOMP-1559: Support configuration of the maxBatchSize enablement TCOMP-1561: Custom action type shouldn’t need to be enforced to define a family method TCOMP-1562: Support JsonObject type in actions TCOMP-1564: Move to java.nio.Path instead of java.io.File in component-runtime-manager stack where possible TCOMP-1565: Upgade to Junit Jupiter 5.6.0-M1 TCOMP-1566: Don’t compute jvmMarkers per component module but once for all TCOMP-1567: Cache Artifact path in case of reuse TCOMP-1568: Lazily create the container services TCOMP-1569: Upgrade starter to gradle 6.0-rc1 TCOMP-1570: Ensure starter adds _placeholder entries in Messages.properties TCOMP-1571: Support [length] syntax to change array configuration TCOMP-1572: Validate that @Option is not used on final fields TCOMP-1574: Upgrade to CXF 3.3.4 TCOMP-1575: Upgrade to Spark 2.4.4 TCOMP-1577: Upgrade to xbean 4.15 TCOMP-1578: Upgrade asciidoctor-pdf to v1.5.0-beta.7 TCOMP-1581: Support JUnit5 meta annotations for our extensions TCOMP-1702: Improve columns name TCOMP-1685: Provide docker images based on TSBI TCOMP-1558: org.talend.sdk.component.api.service.record.RecordService must be serializable TCOMP-1548: Basic Remote Engine Customizer TCOMP-1550: Component configuration instantiation can be slow for complex configurations TCOMP-1551: ObjectFactory should default to fieldproperties when field injection is activated TCOMP-1553: Simplify and widden excluded classes for with transformer support TCOMP-1555: Upgrade to Tomcat 9.0.27 TCOMP-1556: Studio short, byte, BigDecimal and char types are wrong handled TCOMP-1557: Upgrade to Beam 2.16.0 TCOMP-1509: Intellij plugin does not declare java module preventing the plugin to run under last versions TCOMP-1526: Upgrade talend UI bundle (js) to 4.6.0 TCOMP-1533: JSON-B API does not enable to combine multiple adapters or (de)serializers in JsonbConfig TCOMP-1536: @DefaultValue ignored in documentation generation TCOMP-1541: Studio integration enforces JSON<→Record conversion instead of relying on rowStruct making number precision lost TCOMP-1542: Validator plugin uses family instead of pluginId (artifactId) to validate local-configuration TCOMP-1508: Don’t let Talend Starter Toolkit loose state on Enter in intellij TCOMP-1543: Add a uispec mapper TCOMP-1544: Update Geronimo JSON-P spec bundle to v1.3 TCOMP-1545: Update OpenWebBeans to version 2.0.12 TCOMP-1546: Update Meecrowave to 1.2.9 TCOMP-1547: Update Johnzon to 1.2.1 TCOMP-1279: Rewrite the pojo <→ record mapping to keep number types TCOMP-1504: Apache Beam 2.14.0 upgrade TCOMP-1505: Upgrade jackson-databind to 2.9.9.3 TCOMP-1506: Enable actions in bulk endpoint TCOMP-1507: Upgrade to johnzon 1.1.13 TCOMP-1511: Upgrade cxf to v3.3.3 TCOMP-1513: Upgrade to Tomcat 9.0.24 TCOMP-1514: Provide a RecordService to simplify record enrichment coding in processors TCOMP-1515: Record visitor API TCOMP-1517: Use netty 4.1.39.Final in junit http tools TCOMP-1518: Upgrade to slf4j 1.7.28 TCOMP-1519: Upgrade to jib-core 0.10.1 TCOMP-1520: Don’t use JsonNode with Avro Fields anymore TCOMP-1521: Upgrade to Beam 2.15.0 TCOMP-1522: Basic singer/tap/stitch integration with kit components TCOMP-1523: Upgrade Apache Geronimo OpenAPI to v1.0.11 TCOMP-1524: Upgrade starter to gradle 5.6 TCOMP-1525: Upgrade commons-compress to v1.19 TCOMP-1527: Remove beam Mapper/Processor wrapping support TCOMP-1528: Upgrade to maven 3.6.2 TCOMP-1529: Asciidoctor 2.1.0 upgrade TCOMP-1530: geronimo-annotation 1.2 upgrade TCOMP-1532: Upgrade to Junit 5.5.2 TCOMP-1535: Upgrade to johnzon 1.2.0 TCOMP-1537: Upgrade to Tomcat 9.0.26 TCOMP-1538: Upgrade to jackson 2.9.10 TCOMP-1539: Rework default direct runner/spark classloader rules TCOMP-1540: Ensure Asciidoctor documentation rendering releases properly JRuby threads (main usage only) TCOMP-1478: /documentation/component/{id} internationalization does not work when embedded TCOMP-1479: When generating the documentation, it can happen the lang is wrong due to ResourceBundle usage TCOMP-1480: Servers docker images don’t have curl or wget available TCOMP-1497: POJO to Record mapping is not supported in processors TCOMP-1498: SVG2Mojo wrongly log the source file as being created TCOMP-1499: component-form does not support array of object of object if 2 levels use the same field name TCOMP-1500: Ensure component-form button have a key to have an id and propagate errors in the front TCOMP-1503: EnvironmentSecuredFilter not working on /environment/ TCOMP-1482: Enable web tester to switch the language TCOMP-1483: Enable to expose the documentation through the web tester TCOMP-1485: Asciidoctor documentation does not enable titles (component name and configuration ones) to be translated TCOMP-1486: Ensure locale mapping is configurable in component-server TCOMP-1484: Junit 5.5.0 upgrade TCOMP-1487: AsciidocMojo should only use ROOT locale by default TCOMP-1488: Enable to translate gridlayout names TCOMP-1489: Upgrade Tomcat to v9.0.22 TCOMP-1491: Upgrade JIB to v1.4.0 TCOMP-1492: Upgrade jackson-databind to 2.9.9.1 TCOMP-1493: Rewrite component exception to ensure they can be loaded after a serialization TCOMP-1494: Upgrade to junit jupiter 5.5.1 TCOMP-1495: Upgrade to Geronimo OpenAPI 1.0.10 TCOMP-1496: [testing tool] MainInputFactory does not support Record TCOMP-1501: Remove generate mojo TCOMP-1502: [maven plugin] upgrade jib-core to 0.10.0 TCOMP-1469: Studio maven repository not found OOTB TCOMP-1472: Connectors maven goal does not work in 1.1.10 TCOMP-1473: Docker image text log setup should use ISO8601 and not HH:mm:ss.SSS TCOMP-1470: Upgrade Tomcat to v9.0.21 TCOMP-1471: Upgrade Geronimo OpenAPI to v1.0.9 TCOMP-1474: Ensure proxies definition are java >=11 friendly TCOMP-1425: Spark classes not excluded anymore in component-runtime-beam leading to classloading issues TCOMP-1427: dependencies.txt mojo uses timestamped versions for snapshots instead of just -SNAPSHOT TCOMP-1431: [maven] Asciidoctor files should be attached with adoc extension and not jar one TCOMP-1433: [form-model] itemwidget ignored from uischema builder TCOMP-1438: Index cache can lead to invalid index list of component TCOMP-1440: Bulk components without @ElementListener when used with component-extension (default in the server) TCOMP-1441: Missing parameter init in the UiSchema Trigger builder TCOMP-1446: Rework gradle lifecycle TCOMP-1419: Upgrade build to groovy 2.5.7 TCOMP-1420: Upgrade maven compiler to 3.1.2 TCOMP-1422: Filter allowed beam classes in component-server image TCOMP-1423: Enable to customize studio maven repository for deploy-studio maven and gradle goal/task TCOMP-1426: Ensure Spark rule and @WithSpark uses a default version consistent with the runtime TCOMP-1430: Deprecate built-in icons in favor of vendor specific icons TCOMP-1432: basic dita generation for the component documentation TCOMP-1434: [form-model] Add withCondition to UISchema builder TCOMP-1435: Dont use beam_sdks_java_core shaded libraries TCOMP-1437: Add infinite metadata to ComponentDetail TCOMP-1444: Remove KnownJarsFilter since it is no more used to discover components TCOMP-1445: Icon must support SVG TCOMP-1448: [starter] provide a basic OpenAPI integration TCOMP-1449: Upgrade XBean to v4.14 TCOMP-1450: Add a read-only bulk endpoint in component-server TCOMP-1451: [upgrade] Johnzon 1.1.12 TCOMP-1452: [upgrade] Meecrowave 1.2.8 TCOMP-1453: Upgrade to CXF 3.3.2 TCOMP-1455: Prepare DateTime support in configurations TCOMP-1457: Upgrade to Apache Beam 2.13.0 TCOMP-1458: Ensure _placeholder presence is encouraged and validated TCOMP-1459: Experimental way to patch a component dependency TCOMP-1461: Extension API for the validator plugin TCOMP-1462: Validate through the corresponding build task provided SVG TCOMP-1464: Upgrade to OpenWebBeans 2.0.11 TCOMP-1465: Upgrade to JUnit 5.5.0-RC1 TCOMP-1466: Upgrade to ziplock 8.0.0-M2 TCOMP-1467: Upgrade mock server (testing tool) to netty 5.0.0.Alpha2 TCOMP-1468: Support docker-compose >= 1.23 in vault-proxy TCOMP-1374: ensure Utf8 avro strings don’t leak in AvroRecord API, even using get(Object.class, …) TCOMP-1375: When two sources use the same dataset and one source has additional required parameter the validation fails TCOMP-1384: Enhance studio guess schema algorithm to find implicitly the action to call if needed TCOMP-1388: Can’t change the dataset name in starter TCOMP-1389: Intellij starter fails to generate a project TCOMP-1398: Using after option of @updateable can lead to a null pointer exception in component-form TCOMP-1401: Documentation table is broken TCOMP-1407: Databricks: interface javax.json.stream.JsonGeneratorFactory is not visible from class loader TCOMP-1386: Add withRecord(String,Record) in Record.Builder TCOMP-1387: Use icon bundle version 3.1.0 TCOMP-1412: Add rest and couchbase icon to component api TCOMP-1376: Upgrade jupiter to 5.4.2 TCOMP-1385: talend.component.server.component.registry must be a list TCOMP-1390: Move component-api to component-runtime repository TCOMP-1392: Tomcat 9.0.19 upgrade TCOMP-1402: Provide a placeholder for classpath extensions in docker images TCOMP-1403: Upgrade asciidoctor to 2.0.0 and asciidoctor-pdf to alpha17 TCOMP-1404: Upgrade to Apache Beam 2.12.0 TCOMP-1408: Starter does not support types starting with a lowercase TCOMP-1411: ComponentManager relies on beam jar name. This is unlikely and should move to beam integration module. TCOMP-1417: Upgrade to Geronimo OpenAPI 1.0.8 TCOMP-1326: Avro Schema is not serializable as JSON so guess schema action does not work when compoennt-runtime-beam is present TCOMP-1330: Shade extensions don’t inherit from pluginrepositories TCOMP-1340: Tools webapp (talend-component:web) does not support changing the locale anymore TCOMP-1343: Use LogicalTypes.timestampMillis() on DATETIME for avro record builder TCOMP-1360: Renaming an option (@Option("custom")) does not work on fields of type object TCOMP-1370: ImageM2Mojo does not set timestamp in the docker image leading to component-server having a wrong lastUpdated value TCOMP-1372: Nested components don’t expose their doc deterministicly until it is overriden TCOMP-1341: Register deploy in studio task OOTB in gradle extension TCOMP-1325: Upgrade CXF to 3.3.1 TCOMP-1327: /environment iterates over deployed plugin for each call, this is not needed TCOMP-1328: Upgrade to Beam 2.11.0 TCOMP-1329: Lazy initialize parameter model to have a quicker cold start in plain main(String[]) TCOMP-1331: Use java 8u191 as base docker image TCOMP-1332: Provide a simple way to filter configurations and component on /index endpoints TCOMP-1334: Add a mojo to generate the list of components/services classes TCOMP-1335: Add in doc mojo table the type of configuration the parameter belongs to TCOMP-1336: Allow output processors to only have an @AfterGroup taking the list of record of the group in parameter TCOMP-1346: Upgrade to Tomcat 9.0.17 TCOMP-1347: Upgrade to Slf4j 1.7.26 TCOMP-1348: [form-core] Ensure suggestions trigger is bound to "change" event too TCOMP-1349: [form-core] When a tab is empty, don’t show it TCOMP-1350: talend.component.server.component.registry should support glob pattern TCOMP-1351: Upgrade jsoup for Spark Cluster Testing module TCOMP-1353: component-server must not use TALEND-INF/dependencies.txt but another path TCOMP-1354: Enforce services to belong to the delcaring service class TCOMP-1361: Upgrade to asciidoctorj 2.0.0-RC.1 TCOMP-1362: Beam Wrapped Components should throw shared exception types TCOMP-1366: Upgrade to XBean 4.13 to not track all classes scanned TCOMP-1371: Upgrade to Apache Geronimo OpenAPI 1.0.7 TCOMP-1307: support char and character types in configuration. TCOMP-1312: Component-form-core shouldn’t trigger validation of object due to conditional visibility (only individual fields are validable) TCOMP-1314: category field of the starter is broken TCOMP-1316: [build] Ensure snapshot use timestamped versions in dependencies.txt TCOMP-1306: Add RecordPointerFactory to enable to extract data from Record using json pointer spec TCOMP-1315: Ensure @Internationalized can use shortnames too in Messages.properties TCOMP-1303: Support docker configs/secrets in docker images TCOMP-1304: Vault proxy should support token configuration TCOMP-1305: Upgrade to beam 2.10.0 TCOMP-1308: Upgrade to Talend UI 2.6.0 TCOMP-1309: Upgrade to Component API 1.1.5 TCOMP-1310: Ensure there is a basic secured mecanism to store configuration data TCOMP-1317: Use Apache Geronimo Microprofile Config extensions (docker and secured string) TCOMP-1318: Upgrade to Apache Meecrowave 1.2.7 TCOMP-1319: Upgrade Apache Geronimo Metrics to 1.0.3 TCOMP-1320: Upgrade to Apache Geronimo OpenAPI 1.0.6 TCOMP-1321: Upgrade to Apache Geronimo OpenTracing 1.0.2 TCOMP-1322: Upgrade to Apache Geronimo Config 1.2.2 TCOMP-1263: When using @Updateable(after=xxx) the visibility condition (@ActiveIf) of the after field shouldn’t be inherited TCOMP-1264: AvroSchema does not unwrap null(able types) to map to Schema model TCOMP-1265: dataset / datastore cloud validation : allow nested configuration types TCOMP-1267: /documentation does not filter properly component TCOMP-1281: Add jackson-mapper-asl in docker image of the server TCOMP-1298: Support restricted lists for @Proposable TCOMP-1297: make max batch size property configurable for family and components through LocalConfiguration TCOMP-1266: Enhance starter to support dataset and datastore TCOMP-1268: Ensure /environment is not callable if not local or secured TCOMP-1269: Ensure ErrorReportValve does not leak Tomcat version OOTB TCOMP-1271: Upgrade to talend UI 2.3.0 TCOMP-1272: Move multiSelectTag to multiSelect for web environment TCOMP-1273: [build/dev plugin] Automatically open the browser for talend-component:web task/goal TCOMP-1276: Exclude xerces from component loadable resources for XMLReaderFactory TCOMP-1282: Upgrade meecrowave to 1.2.6 TCOMP-1283: Upgrade cxf to 3.3.0 TCOMP-1284: Upgrade to johnzon 1.1.11 TCOMP-1292: Provide a vault friendly integration for the server TCOMP-1293: Upgrade to Tomcat 9.0.16 TCOMP-1295: Ensure local-configuration.properties of a container are merged TCOMP-1296: Ensure user can enrich families with custom jar+configuration TCOMP-1245: Provided services (SPI) by tacokit not available TCOMP-1246: Rework docker image setup to use jib TCOMP-1247: Upgrade geronimo metrics to 1.0.2 TCOMP-1248: Upgrade to geronimo opentracing 1.0.3 TCOMP-1249: Provide segment extractor for doc endpoint TCOMP-1250: Make component documentation (@Documentation on component) i18n friendly TCOMP-1251: cache avrocoders used in SchemaRegistryCoder TCOMP-1252: Remove html support in documentation endpoint TCOMP-1253: Refine OpenAPI documentation TCOMP-1256: Add mapDescriptorToClassLoader to create a classloader from a list of gav TCOMP-1258: Support to build a Record from a provided Schema TCOMP-1259: Add getOptional to Record TCOMP-1223: byte[] not supported in AvroRecord (beam) TCOMP-1222: Ensure @WithComponents and @Environment are compatible TCOMP-1234: Upgrade to beam 2.9.0 TCOMP-1235: Upgrade to antora 2 TCOMP-1237: Upgrade component-api to 1.1.2 TCOMP-1238: Upgrade metrics and opentracing microprofile libraries in docker image to use Geronimo extensions TCOMP-1239: OpenWebBeans 2.0.9 upgrade TCOMP-1240: Johnzon 1.1.11 upgrade TCOMP-1242: Runtime validation error message wrongly interpolated TCOMP-1243: Ensure component classloader isolates the system classloader resources except for the JVM ones TCOMP-1170: [regression] http testing module pom imports netty and jsonb stack TCOMP-1181: tacokit can’t pass the long type field from ui rightly TCOMP-1187: Job DSL does not support correctly parameters when they are URI/URL TCOMP-1189: Ensure primitive are not nullable in Record model (builder) TCOMP-1191: [beam] BeamIOTransformer does not support serialization of complex objects correctly TCOMP-1192: Ensure Avro schema union is interpreted as nullable in Record Schema model TCOMP-1194: [testing] Ensure BeamEnvironment adds component-runtime-beam TCOMP-1196: Nested maven repository not used for component module TCOMP-1197: Tacokit beam tests. NPE when creating the schema with RECORD type. TCOMP-1198: Tacokit beam tests. SchemaParseException ⇒ drop unsupported characters TCOMP-1200: Packages not defined from nested repository classes TCOMP-1201: includeTransitiveDependencies option of nested-maven-repository does not work TCOMP-1202: Refine avro classloading exclusion to accept hadoop and mapred packages TCOMP-1205: Empty JSon object lead to NPE TCOMP-1209: Ensure SerializableCoder is replaced with a contextual version to support Talend Component Kit classloading model TCOMP-1210: BeamComponentExtension should let the exception go back to the caller when the transform fails TCOMP-1215: Nested maven repository in jars don’t go through transformers TCOMP-1218: Record entries order shouldn’t be sorted by the runtime TCOMP-1185: Support maxBatchSize in Job test runner for standalone mode TCOMP-1171: Remove component proxy server from the project TCOMP-1182: Ensure the property editor for the configuration registers the default converters TCOMP-1183: Upgrade JRuby to 9.2.4.0 TCOMP-1184: Avoid to do a group by key in BeamExecutor (job DSL) when not needed TCOMP-1188: Tolerate null for dates in Records TCOMP-1190: Enable secure processing for DocumentBuilderFactory instances TCOMP-1193: Add injectable ContainerInfo with the containerId (plugin) in services TCOMP-1195: Enable user to extend BeamEnvironment test tempalte more easily TCOMP-1199: Nested repository not used when the classpath is not composed of a single jar TCOMP-1204: [dependency upgrade] XBean 4.12 TCOMP-1207: [beam] add ContextualSerializableCoder TCOMP-1213: Upgrade guava to v27 for testing modules TCOMP-1216: Take into account the visibility for the parameter validation TCOMP-1217: Add JVM system property talend.component.runtime.serialization.java.inputstream.whitelist for our custom object input stream TCOMP-1219: Upgrade starter to gradle 5 TCOMP-1220: Upgrade Maven to 3.6.0 in starter TCOMP-1121: [tacokit proxy] suggestion trigger creation issue TCOMP-1122: [tacokit proxy] slefRefrence filter configuration type by name, type and family TCOMP-1123: Processor component onNext duplicate columns in record for rowStructs TCOMP-1126: UiSpecService shouldn’t show the documentation by default TCOMP-1129: form core - $selfReference breaks triggers TCOMP-1130: component form - default value of maxBatchSize prop loose it type. TCOMP-1131: [beam integration] Ensure Coder is contextual (classloader) TCOMP-1132: Ensure beam custom Coders implement equals.hashCode for beam contract TCOMP-1148: Asciidoctor documentation fails for collection of objects TCOMP-1149: [testing] BeamEnvironment does not reset PipelineOptionsFactory properly for beam > 2.4 TCOMP-1155: [proxy server] arrays not supporting null values in ConfigurationFormatter TCOMP-1159: AvroSchema does not support DATETTIME type (beam module) TCOMP-1168: Avro record implementation ignores nullable/union TCOMP-1143: Ensure icons are validated and fail the build if a custom one is missing (validate mojo) TCOMP-1112: Let beam PTransform define an @ElementListener method to set the component design (inputs/outputs) TCOMP-1113: Simplify the scanning by assuming there is a TALEND-INF/dependencies.txt in components TCOMP-1120: BeamMapperImpl.isStream not accurate for UnboundedSource TCOMP-1124: Add /metrics endpoint TCOMP-1125: Extend CustomPropertyConverter to pass the convertion context TCOMP-1127: Record doesn’t support null values TCOMP-1133: CXF 3.2.7 upgrade TCOMP-1134: Ensure any input/output have a dataset TCOMP-1135: Ensure any dataset has a datastore TCOMP-1136: deprecate "generate" mojo TCOMP-1145: [dependency upgrade] Beam 2.8.0 TCOMP-1146: implement infinite=true in PartitionMapper/Input TCOMP-1150: Upgrade rat plugin to 0.13 TCOMP-1154: Required validation at runtime ignores lists and nested objects TCOMP-1157: [dependency upgrade] Tomcat 9.0.13 TCOMP-1158: Enable JUnit test collector to use a static storage instead of thread related one TCOMP-1160: Upgrade spark to 2.4.0 TCOMP-1161: Upgrade shade plugin to 3.2.1 TCOMP-1162: Upgrade nested-maven-repository shade transformers to support last maven versions TCOMP-1163: Upgrade openwebbeans to 2.0.8 TCOMP-1164: Validate mojo does not log any success information TCOMP-1165: Dependency mojo does not log any success information TCOMP-1166: Documentation mojo does not log generated files properly TCOMP-1167: Beam-Avro record name generation should use avro fingerprint to be more unique than current logic TCOMP-1086: Fix documentation about DiscoverSchema TCOMP-1064: Update action can’t receive List parameter TCOMP-1110: When a configuration has no layout and uses @AfterGroup the configuration is lost TCOMP-1111: Move to PropertyEditorRegistry from xbean instead of using the deprecated static class TCOMP-1000: @Option name value is not respected on fields TCOMP-1008: Enum order is lost TCOMP-1009: (web) OptionsOrder ignored for tables (List), fields located in random order TCOMP-1028: [tools-webapp] submit button no more functional TCOMP-1031: DiscoverSchema parameters are not correctly mapped in Studio GuessSchema runtime TCOMP-1044: Fix java.lang.ClassCastException in TableActionParameter TCOMP-1046: String option can’t set default value from a file TCOMP-1056: ActiveIf doesn’t work in advanced settings TCOMP-1072: Metadata migration issues TCOMP-1074: talend-component mvn plugin : deploy-in-studio need to rise an error when component is already installed TCOMP-1075: component reload file on windows after deploying a modified jar TCOMP-1076: component starter - fix mapper generation (Record integration) TCOMP-1077: component starter - ensure kit version are updated atomically. TCOMP-1078: Guess Schema button is not shown on Basic Settings view TCOMP-1082: Fix Exception during HealthCheck parameter deserialization TCOMP-1085: [classloader] com.sun is too wide as exclusion TCOMP-1104: Fix drag and drop issue for dataset/datastore metadata TCOMP-779: Drop down list Java type in configuration class TCOMP-819: Processor doesn’t produce more than 1 row on each iteration TCOMP-917: Migration handler need only to receive component configuration TCOMP-941: Default and init values are ignored in connection wizzard (datastore/dataset) TCOMP-968: Trigger AsyncValidation call only when option annotated with Validable is changed TCOMP-970: Add support for complex parameter types for AsyncValidation methods TCOMP-973: component migration - the configuration version need to be serialized in addition to the version of the component TCOMP-984: Integrate ParameterizedTest with component-runtime-http-junit capture mode TCOMP-988: component migration - fix nested configuration migration TCOMP-989: .car studio install command breaks config.ini of the studio TCOMP-991: metadat : ignore activations from config not being part of the form while creating metadata TCOMP-996: metadata : migration issues TCOMP-1001: [proxy] ConfigurationClient should expose a migrate method TCOMP-1011: Ensure datastore/dataset i18n names are validated by the maven/gradle plugins TCOMP-1013: Add an operator support in @ActiveIfs (OR/AND switch) TCOMP-1014: Ensure a dataset has a source which has no other required parameters in the validator TCOMP-1029: Extend ActiveIf EvaluationStrategy with CONTAINS strategy TCOMP-1063: Integrate Record API to the studio TCOMP-1069: restrict input branches for output components to only one. TCOMP-1071: support actions i18n display name TCOMP-1092: Ensure @Configuration POJO are injectable as Supplier in services TCOMP-1094: Add FullSerializationRecordCoder coder for Record in beam module TCOMP-1095: Ensure all configuration type models root entries are named "configuration" TCOMP-993: [proxy] Propagate UiSpecContext in referenceservice#findByTypeAndName TCOMP-994: [dependency upgrade] CXF 3.2.6 TCOMP-1003: [dependency upgrade] Tomcat 9.0.12 TCOMP-1004: [dependency upgrade] Log4j2 2.11.1 TCOMP-1015: Upgrade icons to 1.0.0 TCOMP-1019: (form) enum should lead to restricted datalist TCOMP-1037: [dependency upgrade] Johnzon 1.1.9 TCOMP-1038: Drop spring client from component-form-core TCOMP-1041: HttpClient should enable to process InputStream directly TCOMP-1042: Upgrade to JUnit 5.3.1 TCOMP-1045: Add documentation in metadata and enable to use it in the UI on configuration TCOMP-1047: Make Suggestable text field editable (align with web) TCOMP-1048: Add update API for configuration TCOMP-1049: Add completion support for actions displayname in intellij plugin TCOMP-1050: Provide simple OAuth1 integration TCOMP-1051: Remove brave and move to geronimo-opentracing TCOMP-1054: Introduce @Configuration API TCOMP-1055: remove the ExecutionResource TCOMP-1057: Add ActiveIf on @Proposable test-case TCOMP-1058: Add DefaultValue on proposable/dynamicValue testcase TCOMP-1059: Rework generic record format TCOMP-1073: [maven/gradle plugin] Add configuration support in web goal TCOMP-1079: Document new Record structure TCOMP-1080: [dependency upgrade] Meecrowave 1.2.4 TCOMP-1081: ComponentManager should ignore engine classes in its filtering TCOMP-1087: Jsonb service should serialize byte[] as BASE64 TCOMP-1089: [starter] Upgrade gradle to 4.10.2 TCOMP-1090: [form] Main/Advanced order not respected when some remote action are involved TCOMP-1091: Ensure main component is preferred over test ones in a maven project TCOMP-1093: [dependency upgrade] netty 4.1.30.Final for junit http testing module TCOMP-1096: [dependency upgrade] xbean 4.10 TCOMP-1097: [dependency upgrade] Beam 2.7.0 TCOMP-1099: Upgrade web ui bundle to 1.0.2 TCOMP-1101: Add conditional rendering in the generated documentation TCOMP-1102: Reflect in documentation that Validable/AsyncValidation doesn’t support Object types TCOMP-1106: Enable to generate the component documentation in multiple languages TCOMP-1107: ConfigurableClassLoader does not priviledges container classloader for getResourceAsStream TCOMP-877: [documentation] Sample implementation of bulk/batch/commit-interval using groups TCOMP-980: Provide a ValidationService in server-proxy TCOMP-985: Align docker git metada on out Standard TCOMP-998: [dependency upgrade] Apache Commons Compress 1.18 TCOMP-911: Suggestions callback doesn’t support Configuration parameters TCOMP-921: String cannot be cast to Boolean when adding table with checkboxes TCOMP-922: component manager : support loading dependencies from job lib folder. TCOMP-924: component-kit.js errors are not sent to the error handler TCOMP-927: talend-component:web errors are not always unwrapped and understandable TCOMP-934: Ensure Studio rely on category and doesn’t append family name TCOMP-960: Suggestions parameters are not correctly resolved in Studio TCOMP-961: Default value of Suggestions method parameter is ignored TCOMP-964: ClassCastException is thrown when non-string values are used as Suggestions method parameter TCOMP-825: Provide component server proxy TCOMP-928: Add negate and evaluation strategy to @ActiveIf TCOMP-929: Ensure category contains the family TCOMP-816: Check migration feature and implement missing use-cases TCOMP-918: create a mvn bom with tacokit stack to keep some dependencies aligned between component-runtime and it’s studio integration TCOMP-932: Avoid Kafka recursive logging for component server TCOMP-933: Drop component-kit.js module TCOMP-935: Component server should log application and service in kafka mode TCOMP-938: Add a builtin::http trigger in the server proxy TCOMP-939: Ensure the proxy server can lookup references with a SPI TCOMP-943: (web) Grand parent references for triggers not well resolved TCOMP-944: (proxy server) Ensure the trigger are well resolved for references TCOMP-947: (maven/gradle) ensure web task logs there is a UI TCOMP-953: Upgrade to ziplock 7.0.5 TCOMP-954: Upgrade netty to 4.1.28.Final for the test stack TCOMP-958: Componentvalidator error message in case of an unsupported type is misleading TCOMP-959: [dependency upgrade] Upgrade to icon bundle 0.202.0 TCOMP-962: .car deploy-in-studio command (CarMain) should support to override an existing version TCOMP-965: [dependency upgrade] Apache Beam 2.6.0 TCOMP-966: Ensure Studio integration renames HTTP threads to identify them more explicitly TCOMP-967: Ensure parameter index is in metadata for services and constructors TCOMP-919: Starter doesn’t synchronize correctly with central versions TCOMP-920: Use Meecrowave 1.2.3 TCOMP-888: Designer pipeline records counter are wrong for tacokit components with multiples outputs TCOMP-899: Update Beam 2.5.0 compatibility TCOMP-903: [tacokit studio integration] - Guess schema - better handling of number types recognition TCOMP-904: [tacokit studio integration] - fix job classpath generation TCOMP-913: Fix absolute path resolution for child of child use-case TCOMP-900: [tacokit studio integration] - Handle conditional outputs TCOMP-898: Ensure starter will be able to auto update its versions to avoid redeployments TCOMP-905: Enrich scanning exclusion set TCOMP-906: Minimalist JsonObject to IndexeredRecord utilities for beam TCOMP-907: Support maxBatchSize as in the studio in Beam TCOMP-910: Add maxbatchsize as built in parameter to Processor meta model TCOMP-915: Upgrade Apache Meecrowave to 1.2.2 TCOMP-822: [Windows] deploy-in-studio & car copy jar command in mvn plugin - don’t work if the studio is running TCOMP-844: Service default method forwarded to interface method instead of implementation one if exists TCOMP-848: [junit5] implicit mock collector and emitter are not resetted per method TCOMP-851: [form] UiSchema shouldn’t have a JsonSchema TCOMP-858: @OptionsOrder not respected by form-core TCOMP-862: [form-core] ".." path is not correctly resolved TCOMP-863: Job DSL doesn’t support multiple outputs TCOMP-873: Fix shade junit-http module : remove shaded dependencies from generated artifact TCOMP-889: [form] arrays are lost in trigger paths TCOMP-890: Merge the component outputs (by name) from @AfterGroup and @ElementListener TCOMP-893: Don’t log a warning for services when parameters don’t have i18n support TCOMP-834: Ensure that component has only one configuration argument. TCOMP-845: [junit] ComponentsHandler misses findService TCOMP-846: [junit] allow to inject current plugin services in test class TCOMP-847: Support gzip in JUnit HTTP tooling TCOMP-849: [junit http] support to match the request payload TCOMP-850: MavenDecrypter should tolerate ${env.xxx} syntax TCOMP-861: Ensure Car Mojo can be skipped TCOMP-887: [studio] add chunk size advanced common param for processors & output TCOMP-892: Validate runtime configuration before executing the runtime TCOMP-829: Configuration Type tree is not correctly computed TCOMP-830: Move all configuration to Microprofile Config instead of DeltaSpike TCOMP-832: Provide a way to access lastUpdatedTimestamp in rest api TCOMP-833: Upgrade gradle+maven for the starter TCOMP-839: Add an API to load lazily the potential values of a list TCOMP-840: Upgrade icon bundle to 0.190.2 TCOMP-841: Add validation of option names in the validator TCOMP-852: [dependency upgrade] Upgrade shrinkwrap-resolver-impl-maven to 3.1.3 TCOMP-855: Support service injections in services TCOMP-856: [dependency upgrade] OpenWebBeans 2.0.6 TCOMP-857: SimpleCollector must not depend on junit 4 TCOMP-864: Mojo should be thread safe for car/dependencies.txt generation TCOMP-867: Expose Injector service TCOMP-868: Create an ObjectFactory service TCOMP-869: Ensure actions can get injected the requested lang TCOMP-870: Provide Beam DoFn to simplify the migration from IndexedRecord to JsonObject TCOMP-876: Allow custom converters in form-core TCOMP-878: Add beam in the docker image OOTB TCOMP-879: CarMojo doesn’t use car extension to attach the artifact TCOMP-880: [dependency upgrade] Maven 3.5.4 TCOMP-881: [dependency upgrade] CXF 3.2.5 TCOMP-882: [dependency upgrade] Tomcat 9.0.10 TCOMP-883: [dependency upgrade] Beam 2.5.0 TCOMP-884: [dependency upgrade] Upgrade to icon bundle 0.197.0 TCOMP-894: [dependency upgrade] Johnzon 1.1.8 TCOMP-895: [dependency upgrade] xbean 4.9 TCOMP-827: Fix Automatic-Module-Name TCOMP-811: Upgrade to tomcat 9.0.8 TCOMP-826: Extract component model from component server to a new artifact TCOMP-763: Add a dev mode in the studio for tacokit TCOMP-802: Add method to upload dependencies from .car to nexus TCOMP-808: Upgrade to JUnit 5.2.0 TCOMP-809: compress js and css for the starter TCOMP-810: ui spec service uses a multiselecttag for a proposable on a string field TCOMP-804: Idea plugin doesn’t render properly configuration inputs TCOMP-798: intellij plugin - add official starter url TCOMP-799: @Checkable expects the datastore name to match the validation name TCOMP-806: Ensure server and starter support gzip TCOMP-643: Deployment TCOMP-770: Removing component from web UI causes wrong number of components in summary TCOMP-775: Starter - Fix properties keys generation TCOMP-776: component-kit.js ignore credentials TCOMP-783: ActiveIfs doesn’t make option visible TCOMP-796: Datastore check (@Checkable) should default meta parameters to "datastore" if none is found TCOMP-773: Extend the http client api to handle more generic use cases TCOMP-771: ConfigurableClassLoader should skip scala.* classes TCOMP-772: Upgrade icon set to ui/icons 0.179.0 TCOMP-774: Upgrade xbean to 4.8 TCOMP-768: More tolerance of configuration prefix for implicit migration of configuration node in form core library TCOMP-756: Setup maven clirr plugin for component-api +testing TCOMP-762: Starter should only propose a single category level in the ui TCOMP-767: Ensure the configurationtype endpoints have matching name/path values TCOMP-761: Merge component-runtime-manager and component-runtime-standalone TCOMP-764: Clean up component-form-core dependencies TCOMP-765: Upgrade to batik 1.9.1 TCOMP-752: Fix Advanced settings and Test connection button appearance in repository wizard TCOMP-757: Duplicate method name "writeReplace" with signature "()Ljava.lang.Object;" in class file TCOMP-751: Support gzip compression on component-server TCOMP-753: Make classpath scanning to find component configurable TCOMP-758: Support component-server server configuration from system properties TCOMP-759: Enum must be i18n TCOMP-738: Component Server should respect ~/.m2/settings.xml local repository if it exists TCOMP-739: SerializationTransformer shouldn’t use ComponentManager to avoid ClassNotFoundException TCOMP-740: UISpecService should be reactive and use a CompletionStage based API TCOMP-741: UISpecService configuration support TCOMP-742: Configuration Type properties should be rooted TCOMP-744: Ensure wrapped BeamIO uses the right TCCL TCOMP-745: [Dependency Upgrade] CXF 3.2.4 TCOMP-746: [Dependency Upgrade] Tomcat 9.0.6 TCOMP-747: [Dependency Upgrade] Log4j2 2.11.0 TCOMP-748: Make configurationtype index endpoint lighter OOTB TCOMP-749: Intellij Idea plugin TCOMP-750: Unify @Pattern using javascript regex instead of a mixed mode TCOMP-734: Add support for context and globalMap values in Tacokit component settings TCOMP-733: support to use a beam pipeline under the hood for beam components in di TCOMP-693: Integrate Migration API TCOMP-737: upgrade to beam 2.4.0 TCOMP-731: Configuration Type migration handler skipped TCOMP-725: MavenDecrypter doesn’t support comments in settings.xml TCOMP-726: When a component is not found the error message can be misleading TCOMP-728: Http client doesn’t ignore empty query parameters TCOMP-722: WebSocket connection fails with a NPE when the endpoint doesn’t exists TCOMP-723: Adding configurationByExample utility to create query string for Job DSL TCOMP-724: Documentation endpoint doesn’t support HTML TCOMP-446: Support Embedded Documentation TCOMP-650: Ensure component can be executed in beam pipelines TCOMP-651: Ensure beam components can be wrapped and used through the Talend Component Kit Framework TCOMP-653: Web Form metamodel service TCOMP-655: Catalog service TCOMP-656: UISpec compatibility TCOMP-658: Add test Source/Sink collectors in JUnit integration TCOMP-659: Basic job builder API to simplify JUnit tests TCOMP-662: Validation Mojo TCOMP-664: Local testing server for dev TCOMP-675: Select a communication solution for Talend Component Kit server TCOMP-680: Register components into the Studio Palette TCOMP-681: Studio parameters form integration TCOMP-682: Studio Metadata integration TCOMP-683: Studio Runtime integration TCOMP-691: Create context menu for Tacokit node in repository panel TCOMP-719: Support Input Definition TCOMP-720: Support Output Definition TCOMP-721: Initial Widget Definitions

Studio schema  How to access studio's schema in your component.   studio studio-integration schema metadata dynamic columns output sink connector record-schema

Since the 1.1.25 release, the dynamic column feature is supported in Studio with component-runtime components. Dynamic column is available with Enterprise versions of Talend Studio only. In Studio, we can define for each component a schema with associated metadata. To access those informations in your component, you’ve to do a few things: Using the @Structure annotation API: @org.talend.sdk.component.api.configuration.ui.widget.Structure According the specified field type, you will acess to the column names list with List a subset or all wanted metadata with List (see below) Then, we should have a class SchemaInfo as following: Defining a specific class for holding metadata If you don’t want just only column names (using List), you’ll have to define a custom class. Available Studio metadata informations Field name Type Name in Studio label String Column originalDbColumnName String Db Column key Boolean Key type String DB Type talendType String Type nullable Boolean Nullable pattern String Date Pattern length int Length precision int Precision defaultValue String Default comment String Comment Available since 1.43.x release As Talend Component Kit Schema's types aren’t matching all Studio types, we wrap those types in wider types (like Character or char wrapped into String, Short to Integer, and so on…). Anyway, the original type coming from Studio’s IPersistableRow is stored in record’s schema properties under the property name talend.studio.type. Studio managed types are: id_BigDecimal, id_Boolean, id_Byte, id_byte[], id_Character, id_Date, id_Double, id_Document, id_Dynamic, id_Float, id_Integer, id_List, id_Long, id_Object, id_Short, id_String. When handling an output connector designed for Studio, you should have to check for this property to get an accurate type for output. For instance, java.math.BigDecimal is handled in framework as a Type.STRING, so when an output connector will receive a record, in studio context, you’ll need to check for the property and cast it correctly. Here is a simple processor before writing to backend destination: This usage of properties is cumbersome but may fix some potential issues for now. We plan to widen managed types in Record and Schema in a few iterations (No ETA defined yet).

Talend Component Kit best practices  List of best practices for developing Talend components.   best practices checklist

Some recommendations apply to the way component packages are organized: Make sure to create a package-info.java file with the component family/categories at the root of your component package: Create a package for the configuration. Create a package for the actions. Create a package for the component and one sub-package by type of component (input, output, processors, and so on). It is recommended to serialize your configuration in order to be able to pass it through other components. When building a new component, the first step is to identify the way it must be configured. The two main concepts are: The DataStore which is the way you can access the backend. The DataSet which is the way you interact with the backend. For example: Example description DataStore DataSet Accessing a relational database like MySQL JDBC driver, URL, username, password Query to execute, row mapper, and so on. Accessing a file system File pattern (or directory + file extension/prefix/…) File format, buffer size, and so on. It is common to have the dataset including the datastore, because both are required to work. However, it is recommended to replace this pattern by defining both dataset and datastore in a higher level configuration model. For example: Input and output components are particular because they can be linked to a set of actions. It is recommended to wire all the actions you can apply to ensure the consumers of your component can provide a rich experience to their users. The most common actions are the following ones: This action exposes a way to ensure the datastore/connection works. Configuration example: Action example: Until the studio integration is complete, it is recommended to limit processors to one input. Configuring processor components is simpler than configuring input and output components because it is specific for each component. For example, a mapper takes the mapping between the input and output models: It is recommended to provide as much information as possible to let the UI work with the data during its edition. Light validations are all the validations you can execute on the client side. They are listed in the UI hint section. Use light validations first before going with custom validations because they are more efficient. Custom validations enforce custom code to be executed, but are heavier to execute. Prefer using light validations when possible. Define an action with the parameters needed for the validation and link the option you want to validate to this action. For example, to validate a dataset for a JDBC driver: You can also define a Validable class and use it to validate a form by setting it on your whole configuration: The parameter binding of the validation method uses the same logic as the component configuration injection. Therefore, the @Option method specifies the prefix to use to reference a parameter. It is recommended to use @Option("value") until you know exactly why you don’t use it. This way, the consumer can match the configuration model and just prefix it with value. to send the instance to validate. Validations are triggers based on "events". If you mark part of a configuration as @Validable but this configuration is translated to a widget without any interaction, then no validation will happen. The rule of thumb is to mark only primitives and simple types (list of primitives) as @Validable. It can be handy and user-friendly to provide completion on some fields. For example, to define completion for available drivers: Each component must have its own icon: You can use talend.surge.sh/icons/ to find the icon you want to use. It is recommended to enforce the version of your component, event though it is not mandatory for the first version. If you break a configuration entry in a later version; make sure to: Upgrade the version. Support a migration of the configuration. Testing your components is critical. You can use unit and simple standalone JUnit tests, but it is also highly recommended to have Beam tests in order to make sure that your component works in Big Data.

Providing actions for consumers  How to define actions in a service   service component-manager action connection discover dynamic healthcheck schema suggestions validation i18n api

In some cases you can need to add some actions that are not related to the runtime. For example, enabling users of the plugin/library to test if a connection works properly. To do so, you need to define an @Action, which is a method with a name (representing the event name), in a class decorated with @Service: Services are singleton. If you need some thread safety, make sure that they match that requirement. Services should not store any status either because they can be serialized at any time. Status are held by the component. Services can be used in components as well (matched by type). They allow to reuse some shared logic, like a client. Here is a sample with a service used to access files: The service is automatically passed to the constructor. It can be used as a bean. In that case, it is only necessary to call the service method. Some common actions need a clear contract so they are defined as API first-class citizen. For example, this is the case for wizards or health checks. Here is the list of the available actions: Mark an action works for closing runtime connection, returning a close helper object which do real close action. The functionality is for the Studio only, studio will use the close object to close connection for existed connection, and no effect for cloud platform. Type: close_connection API: @org.talend.sdk.component.api.service.connection.CloseConnection Returned type: org.talend.sdk.component.api.service.connection.CloseConnectionObject Sample: Mark an action works for creating runtime connection, returning a runtime connection object like jdbc connection if database family. Its parameter MUST be a datastore. Datastore is configuration type annotated with @DataStore. The functionality is for the Studio only, studio will use the runtime connection object when use existed connection, and no effect for cloud platform. Type: create_connection API: @org.talend.sdk.component.api.service.connection.CreateConnection This class marks an action that explore a connection to retrieve potential datasets. Type: discoverdataset API: @org.talend.sdk.component.api.service.discovery.DiscoverDataset Returned type: org.talend.sdk.component.api.service.discovery.DiscoverDatasetResult Sample: Mark a method as being useful to fill potential values of a string option for a property denoted by its value. You can link a field as being completable using @Proposable(value). The resolution of the completion action is then done through the component family and value of the action. The callback doesn’t take any parameter. Type: dynamic_values API: @org.talend.sdk.component.api.service.completion.DynamicValues Returned type: org.talend.sdk.component.api.service.completion.Values Sample: This class marks an action doing a connection test Type: healthcheck API: @org.talend.sdk.component.api.service.healthcheck.HealthCheck Returned type: org.talend.sdk.component.api.service.healthcheck.HealthCheckStatus Sample: Mark an action as returning a discovered schema. Its parameter MUST be a dataset. Dataset is configuration type annotated with @DataSet. If component has multiple datasets, then dataset used as action parameter should have the same identifier as this @DiscoverSchema. Type: schema API: @org.talend.sdk.component.api.service.schema.DiscoverSchema Returned type: org.talend.sdk.component.api.record.Schema Sample: Mark a method as being useful to fill potential values of a string option. You can link a field as being completable using @Suggestable(value). The resolution of the completion action is then done when the user requests it (generally by clicking on a button or entering the field depending the environment). Type: suggestions API: @org.talend.sdk.component.api.service.completion.Suggestions Returned type: org.talend.sdk.component.api.service.completion.SuggestionValues Sample: This class marks an action returning a new instance replacing part of a form/configuration. Type: update API: @org.talend.sdk.component.api.service.update.Update Extension point for custom UI integrations and custom actions. Type: user API: @org.talend.sdk.component.api.service.Action Mark a method as being used to validate a configuration. this is a server validation so only use it if you can’t use other client side validation to implement it. Type: validation API: @org.talend.sdk.component.api.service.asyncvalidation.AsyncValidation Returned type: org.talend.sdk.component.api.service.asyncvalidation.ValidationResult Sample: These actions are provided - or not - by the application the UI runs within. always ensure you don’t require this action in your component. Mark the decorated field as supporting suggestions, i.e. dynamically get a list of valid values the user can use. It is however different from @Suggestable by looking up the implementation in the current application and not the services. Finally, it is important to note that it can do nothing in some environments too and that there is no guarantee the specified action is supported. API: @org.talend.sdk.component.api.configuration.action.BuiltInSuggestable Internationalization is supported through the injection of the $lang parameter, which allows you to get the correct locale to use with an @Internationalized service: You can combine the $lang option with the @Internationalized and @Language parameters.

Getting started with Talend Component Kit  Learn the basics about Talend Component Kit framework and get ready to create new components   quickstart overview principle description

Talend Component Kit is a Java framework designed to simplify the development of components at two levels: The Runtime, that injects the specific component code into a job or pipeline. The framework helps unifying as much as possible the code required to run in Data Integration (DI) and BEAM environments. The Graphical interface. The framework helps unifying the code required to render the component in a browser or in the Eclipse-based Talend Studio (SWT). Most part of the development happens as a Maven or Gradle project and requires a dedicated tool such as IntelliJ. The Component Kit is made of: A Starter, that is a graphical interface allowing you to define the skeleton of your development project. APIs to implement components UI and runtime. Development tools: Maven and Gradle wrappers, validation rules, packaging, Web preview, etc. A testing kit based on JUnit 4 and 5. By using this tooling in a development environment, you can start creating components as described below. Developing new components using the Component Kit framework includes: Creating a project using the starter or the Talend IntelliJ plugin. This step allows to build the skeleton of the project. It consists in: Defining the general configuration model for each component in your project. Generating and downloading the project archive from the starter. Compiling the project. Importing the compiled project in your IDE. This step is not required if you have generated the project using the IntelliJ plugin. Implementing the components, including: Registering the components by specifying their metadata: family, categories, version, icon, type and name. Defining the layout and configurable part of the components. Defining the execution logic of the components, also called runtime. Testing the components. Deploying the components to Talend Studio or Cloud applications. Optionally, you can use services. Services are predefined or user-defined configurations that can be reused in several components. There are four types of components, each type coming with its specificities, especially on the runtime side. Input components: Retrieve the data to process from a defined source. An input component is made of: The execution logic of the component, represented by a Mapper or an Emitter class. The source logic of the component, represented by a Source class. The layout of the component and the configuration that the end-user will need to provide when using the component, defined by a Configuration class. All input components must have a dataset specified in their configuration, and every dataset must use a datastore. Processors: Process and transform the data. A processor is made of: The execution logic of the component, describing how to process each records or batches of records it receives. It also describes how to pass records to its output connections. This logic is defined in a Processor class. The layout of the component and the configuration that the end-user will need to provide when using the component, defined by a Configuration class. Output components: Send the processed data to a defined destination. An output component is made of: The execution logic of the component, describing how to process each records or batches of records it receives. This logic is defined in an Output class. Unlike processors, output components are the last components of the execution and return no data. The layout of the component and the configuration that the end-user will need to provide when using the component, defined by a Configuration class. All input components must have a dataset specified in their configuration, and every dataset must use a datastore. Standalone components: Make a call to the service or run a query on the database. A standalone component is made of: The execution logic of the component, represented by a DriverRunner class. The layout of the component and the configuration that the end-user will need to provide when using the component, defined by a Configuration class. All input components must have a datastore or dataset specified in their configuration, and every dataset must use a datastore. The following example shows the different classes of an input components in a multi-component development project: Setup your development environment Generate your first project and develop your first component

Talend Component Kit Overview  Learn the basic concepts of the Talend Component Kit framework   framework

Talend Component Kit is a toolkit based on Java and designed to simplify the development of components at two levels: Runtime: Runtime is about injecting the specific component code into a job or pipeline. The framework helps unify as much as possible the code required to run in Data Integration (DI) and BEAM environments. Graphical interface: The framework helps unify the code required to be able to render the component in a browser (web) or in the Eclipse-based Studio (SWT). The Talend Component Kit framework is made of several tools designed to help you during the component development process. It allows to develop components that fit in both Java web UIs. Starter: Generate the skeleton of your development project using a user-friendly interface. The Talend Component Kit Starter is available as a web tool or as a plugin for the IntelliJ IDE. Component API: Check all classes available to implement components. Build tools: The framework comes with Maven and Gradle wrappers, which allow to always use the version of Maven or Gradle that is right for your component development environment and version. Testing tools: Test components before integrating them into Talend Studio or Cloud applications. Testing tools include the Talend Component Kit Web Tester, which allows to check the web UI of your components on your local machine. You can find more details about the framework design in this document. The Talend Component Kit project is available on GitHub in the following repository

component-runtime-testing  Testing component logic using Talend Component Kit tooling   runtime testing JUnit Spark HTTP testing

component-runtime-junit is a test library that allows you to validate simple logic based on the Talend Component Kit tooling. To import it, add the following dependency to your project: This dependency also provides mocked components that you can use with your own component to create tests. The mocked components are provided under the test family: emitter : a mock of an input component collector : a mock of an output component The collector is "per thread" by default. If you are executing a Beam (or concurrent) job, it will not work. To switch to a JVM wide storage, set the talend.component.junit.handler.state system property to static (default being thread). You can do it in a maven-surefire-plugin execution. You can define a standard JUnit test and use the SimpleComponentRule rule: The rule can also be defined as a @ClassRule to start it once per class and not per test as with @Rule. To go further, you can add the ServiceInjectionRule rule, which allows to inject all the component family services into the test class by marking test class fields with @Service: The JUnit 5 integration is very similar to JUnit 4, except that it uses the JUnit 5 extension mechanism. The entry point is the @WithComponents annotation that you add to your test class, and which takes the component package you want to test. You can use @Injected to inject an instance of ComponentsHandler - which exposes the same utilities than the JUnit 4 rule - in a test class field : If you use JUnit 5 for the first time, keep in mind that the imports changed and that you need to use org.junit.jupiter.api.Test instead of org.junit.Test. Some IDE versions and surefire versions can also require you to install either a plugin or a specific configuration. As for JUnit 4, you can go further by injecting test class fields marked with @Service, but there is no additional extension to specify in this case: Streaming components have the issue to not stop by design. The Job DSL exposes two properties to help with that issue: streaming.maxRecords: enables to request a maximum number of records streaming.maxDurationMs: enables to request a maximum duration for the execution of the input You can set them as properties on the job: Using the test://collector component as shown in the previous sample stores all records emitted by the chain (typically your source) in memory. You can then access them using theSimpleComponentRule.getCollectedData(type). Note that this method filters by type. If you don’t need any specific type, you can use Object.class. The input mocking is symmetric to the output. In this case, you provide the data you want to inject: The component configuration is a POJO (using @Option on fields) and the runtime configuration (ExecutionChainBuilder) uses a Map. To make the conversion easier, the JUnit integration provides a SimpleFactory.configurationByExample utility to get this map instance from a configuration instance. Example: The same factory provides a fluent DSL to create the configuration by calling configurationByExample without any parameter. The advantage is to be able to convert an object as a Map or as a query string in order to use it with the Job DSL: It handles the encoding of the URI to ensure it is correctly done. When writing tests for your components, you can force the maxBatchSize parameter value by setting it with the following syntax: $configuration.$maxBatchSize=10. The SimpleComponentRule also allows to test a mapper unitarily. You can get an instance from a configuration and execute this instance to collect the output. Example: As for a mapper, a processor is testable unitary. However, this case can be more complex in case of multiple inputs or outputs. Example: The rule allows you to instantiate a Processor from your code, and then to collect the output from the inputs you pass in. There are two convenient implementations of the input factory: MainInputFactory for processors using only the default input. JoinInputfactory with the withInput(branch, data) method for processors using multiple inputs. The first argument is the branch name and the second argument is the data used by the branch. If needed, you can also implement your own input representation using org.talend.sdk.component.junit.ControllableInputFactory. The following artifact allows you to test against a Spark cluster: The testing relies on a JUnit TestRule. It is recommended to use it as a @ClassRule, to make sure that a single instance of a Spark cluster is built. You can also use it as a simple @Rule, to create the Spark cluster instances per method instead of per test class. The @ClassRule takes the Spark and Scala versions to use as parameters. It then forks a master and N slaves. Finally, the submit* method allows you to send jobs either from the test classpath or from a shade if you run it as an integration test. For example: This testing methodology works with @Parameterized. You can submit several jobs with different arguments and even combine it with Beam TestPipeline if you make it transient. The integration of that Spark cluster logic with JUnit 5 is done using the @WithSpark marker for the extension. Optionally, it allows you to inject—through @SparkInject—the BaseSpark handler to access the Spark cluster meta information. For example, its host/port. Example: Currently, SparkClusterRule does not allow to know when a job execution is done, even by exposing and polling the web UI URL to check. The best solution at the moment is to make sure that the output of your job exists and contains the right value. awaitability or any equivalent library can help you to implement such logic: To wait until a file exists and check that its content (for example) is the expected one, you can use the following logic: The HTTP JUnit module allows you to mock REST API very simply. The module coordinates are: This module uses Apache Johnzon and Netty. If you have any conflict (in particular with Netty), you can add the shaded classifier to the dependency. This way, both dependencies are shaded, which avoids conflicts with your component. It supports both JUnit 4 and JUnit 5. The concept is the exact same one: the extension/rule is able to serve precomputed responses saved in the classpath. You can plug your own ResponseLocator to map a request to a response, but the default implementation - which should be sufficient in most cases - looks in talend/testing/http/_.json. Note that you can also put it in talend/testing/http/.json. JUnit 4 setup is done through two rules: JUnit4HttpApi, which is starts the server. JUnit4HttpApiPerMethodConfigurator, which configures the server per test and also handles the capture mode. If you don’t use the JUnit4HttpApiPerMethodConfigurator, the capture feature is disabled and the per test mocking is not available. For tests using SSL-based services, you need to use activeSsl() on the JUnit4HttpApi rule. You can access the client SSL socket factory through the API handler: Sometimes the query parameters are sensitive and you don’t want to store them when capturing. In such cases, you can drop them from the captured data (.json) and the mock implementation will be able to match the request ignoring the query parameters. JUnit 5 uses a JUnit 5 extension based on the HttpApi annotation that you can add to your test class. You can inject the test handler - which has some utilities for advanced cases - through @HttpApiInject: The injection is optional and the @HttpApi annotation allows you to configure several test behaviors. For tests using SSL-based services, you need to use @HttpApi(useSsl = true). You can access the client SSL socket factory through the API handler: The strength of this implementation is to run a small proxy server and to auto-configure the JVM: http[s].proxyHost, http[s].proxyPort, HttpsURLConnection#defaultSSLSocketFactory and SSLContext#default are auto-configured to work out-of-the-box with the proxy. It allows you to keep the native and real URLs in your tests. For example, the following test is valid: If you execute this test, it fails with an HTTP 400 error because the proxy does not find the mocked response. You can create it manually, as described in component-runtime-http-junit, but you can also set the talend.junit.http.capture property to the folder storing the captures. It must be the root folder and not the folder where the JSON files are located (not prefixed by talend/testing/http by default). In most cases, use src/test/resources. If new File("src/test/resources") resolves the valid folder when executing your test (Maven default), then you can just set the system property to true. Otherwise, you need to adjust accordingly the system property value. When set to false, the capture is enabled. Instead, captures are saved in a false/ directory. When the tests run with this system property, the testing framework creates the correct mock response files. After that, you can remove the system property. The tests will still pass, using google.com, even if you disconnect your machine from the Internet. If you set the talend.junit.http.passthrough system property to true, the server acts as a proxy and executes each request to the actual server - similarly to the capturing mode. With its @ParameterizedTest, you can want to customize the name of the output file for JUnit 5 based captures/mocks. Concretely you want to ensure the replay of the same method with different data lead to different mock files. By default the framework will use the display name of the test to specialize it but it is not always very friendly. If you want some more advanced control over the name you can use @HttpApiName("myCapture.json") on the test method. To parameterize the name using @HttpApiName, you can use the placeholders ${class} and ${method} which represents the declaring class and method name, and ${displayName} which represents the method name. Here is an example to use the same capture file for all repeated test: And here, the same example but using different files for each repetition: